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can be accurately modeled by a sum of real decaying exponentials. However, it is di�cfiult to

obtain the model parameters from measurements when the number of exponentials in the

sum is unknown or the terms are strongly correlated. Traditionally, the relaxation constants

are estimated by nonlinear iterative search that often leads to unsatisfactory results.

An effective EMI modeling technique is developed by first linearizing the problem

through enumeration and then solving the linearized model using a sparsity-regularized
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method is shown to provide accurate and stable estimates of the model parameters.
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detection algorithm is developed to demonstrate the potential of the estimated relaxations.
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SUMMARY

This thesis presents a robust method for estimating the relaxations of a metallic object

from its electromagnetic induction (EMI) response. The EMI response of a metallic object

can be accurately modeled by a sum of real decaying exponentials. However, it is difficult to

obtain the model parameters from measurements when the number of exponentials in the

sum is unknown or the terms are strongly correlated. Traditionally, the relaxation constants

are estimated by nonlinear iterative search that often leads to unsatisfactory results.

An effective EMI modeling technique is developed by first linearizing the problem

through enumeration and then solving the linearized model using a sparsity-regularized

minimization. This approach overcomes several long-standing challenges in EMI signal

modeling, including finding the unknown model order as well as handling the ill-posed

nature of the problem. The resulting algorithm does not require a good initial guess to

converge to a satisfactory solution.

This new modeling technique is extended to incorporate multiple measurements in a

single parameter estimation step. More accurate estimates are obtained by exploiting an

invariance property of the EMI response, which states that the relaxation frequencies do not

change for different locations and orientations of a metallic object. Using tests on synthetic

data and laboratory measurement of known targets, the proposed multiple-measurement

method is shown to provide accurate and stable estimates of the model parameters.

The ability to estimate the relaxation constants of targets enables more robust subsur-

face target discrimination using the relaxations. A simple relaxation-based subsurface target

detection algorithm is developed to demonstrate the potential of the estimated relaxations.
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CHAPTER I

INTRODUCTION

The landmine crisis remains today as landmines continue to maim or kill civilians everyday

worldwide. The International Campaign to Ban Landmines reported that in the year of

2009, landmines and explosive remnants of war caused about 4000 casualties worldwide, of

which over 60% are civilians [1] and more than 30% are children. Much effort and research

has been invested in remediating landmines with one of the primary tasks being the detection

of the landmine itself. However, landmine detection can suffer from a high false-alarm rate

as the detectors also detect other metallic non-mine objects like gun shells, metal cans, and

shrapnel. Therefore, it is of strong interest to discriminate between landmines and metallic

non-mine objects.

Recent research has shown that broadband electromagnetic induction (EMI) sensors

are capable of discriminating between certain types of targets [2–7]. Target discrimination

using broadband EMI sensors is possible because the EMI response of a target is strongly

related to the target’s physical size, shape, orientation, and composition.

EMI sensors work by illuminating a target with a time-varying magnetic field, and then

detecting the scattered magnetic field which is generated by the eddy currents induced

on the target. The broadband EMI sensors measure the scattered field at a finite set of

frequencies or over a short interval measurement times. The measured response can be fitted

to a parametric model, and discrimination of targets is performed based on the fitted model

parameters. This research is performed in the context of frequency-domain broadband EMI

sensors, which have the advantage of avoiding undesired signal sources, such as power line

harmonics.

The main contribution of this work is a new effective EMI modeling technique developed

by first linearizing through enumeration and then solving the linearized model using a

sparsity-regularized minimization. Furthermore, this approach is extended to incorporate
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multiple measurements simultaneously, utilizing physical properties of the EMI signal in

the modeling process, from which more accurate estimates are obtained. This approach

overcomes several long standing challenges in EMI signal modeling, including the unknown

model order as well as the ill-posed condition of the problem.

1.1 EMI Measurement System

This research is conducted as part of the development of a practical field measurement

system to find buried targets. Shown in Fig. 1 is a measurement cart equipped with three

frequency-domain broadband EMI sensors [8]. In the field, this cart is mobile, and when it

is driven near a target, the EMI frequency response of the target is acquired sequentially, as

illustrated in Fig. 2. As the cart moves, multiple EMI responses of a target are measured at

different relative sensor-to-target positions and locations. In addition to the target response,

the frequency response of the soil is also measured because soil is always present in the field

and interacts with the EMI system. Therefore, the total response can be described as

Total response = Target response + Soil response + System noise. (1)

The system noise is primarily due to the thermal noise introduced in the preamplifier of the

system, which can be modeled as a Gaussian white noise [9].

Figure 1: A broadband EMI system mounted on a cart.
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Induced signal

Figure 2: Sequential data acquisition of the EMI system.

To detect and discriminate subsurface targets in the scenario described above, a detec-

tion framework, shown in Fig. 3, is developed in this research. Given a measured response,

the detection framework first passes the response through a soil prescreener to determine

if only soil is present. If a soil-only decision cannot be made, then a metallic object might

be present, and this response is then passed to an estimator where the response is fitted to

an EMI model and the spectrum of the object is estimated. Lastly, a classifier using the

estimated spectrum as a feature vector decides whether this response is from a landmine or

clutter.

Soil prescreener EMI modeling ClassificationTarget 
Response

Decision

Figure 3: Block diagram for the a system that classifies target from measured EMI re-
sponses.

This research focuses on developing techniques to model the EMI response, or, equiva-

lently, to estimate its underlying spectrum. The background for EMI modeling is presented

in Section 1.2. To demonstrate target discrimination using the modeled response, classi-

fiers and a soil prescreener are also developed. The background for target discrimination is

presented in Section 1.3.

1.2 EMI Models

Several EMI models have been proposed, including ones for canonical targets [10, 11] and

ones for targets of more general shape [12–14]. In general, these models are instances of a

Fredholm integral equation of the first kind:

H(ω) = g0 + g∆

∫ ∞
0

G(τ)

1 + jωτ
dτ , (2)
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where H(ω) is the frequency response, τ the relaxation time, and g0 and g∆ are constants;

G(τ) is the distribution function, or the spectrum.

Depending on characteristics of the distribution function, the EMI models assume a

distribution of relaxations that is either continuous or discrete. These two types of spectra

are examined in the following sections, where it is also shown that the discrete spectrum

is appealing for the work in EMI discrimination because of its physical basis as well as its

invariant properties.

1.2.1 Continuous Distribution of Relaxations

Miller et al. proposed a four-parameter model [14], which is also identified with the Cole-

Cole model used in polymer science [15]:

HCC(ω) = g0 +
g∆

1 + (jωτ0)α
, (3)

where τ0 and α are model parameters. It is known from polymer science that this model

has a continuous distribution of relaxation times (DRT)

GCC(τ) =
1

2π

sin(απ)

cosh(α log(τ/τ0)) + cos(απ)
. (4)

The Cole-Cole model assumes a DRT that is symmetric in log τ . However, not all

targets have a symmetric DRT, e.g. a sphere [16]. More complex DRTs can be described by

more complex models, such as the Cole-Davidson or the Havriliak-Negami model [17, 18].

Examples of these DRT models can be found in Fig. 6. While the Cole-Cole model may

not exactly describe a target, it has been shown to be practical for target discrimination in

the context of EMI [6, 7].

1.2.2 Discrete Spectrum of Relaxations

Several researchers have provided a theoretical basis for modeling the EMI response of a

metallic object with an underlying discrete distribution of relaxations [12,13]. In this case,

the unit-step time response h(t) is a discrete sum of damped real exponentials:

h(t) = d0u(t)−
∑
k=1

dke
−t/τku(t), (5)
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where τk > 0 are the real relaxation time constants, dk the real-valued coefficients, and u(t)

the unit step function.

In the frequency domain, the EMI response can be written as

H(ω) = c0 +
K∑
k=1

ck
1− jω/ζk
1 + jω/ζk

, (6)

where ζk = τk
−1 are the relaxation frequencies, c0 the shift, ck the real spectral amplitudes,

and K the model order. Comparing (5) to (6), the model parameters are related by d0 =∑K
k=0 ck and dk = 2ck, where d0 = H(0) is due to the dc magnetization of the target. In

this work, the parameter set S = {(ζk, ck) : k = 1 . . .K} is called the Discrete Spectrum of

Relaxation Frequencies (DSRF) or simply the spectrum; each pair (ζk, ck) is defined as one

relaxation.

To visualize the time-domain and the frequency-domain model and their relationship,

consider a response with S = {(104, 0.5), (105, 0.5)} and c0 = −1. The time-domain response

is shown in Fig. 4, where h(t) is a sum of two decaying exponentials. The frequency response

H(ω) measured at 21 frequencies is shown in Fig. 5, where the real and imaginary parts

of H(ω) are shown separately as well as together on an Argand diagram (complex plane),

parameterized by ω. The plots of H(ω) in Fig. 5 illustrate an important fact about modeling

the EMI response in which only a limited range of the response is observable. This constraint

influences how accurately the true model of an EMI response can be recovered. It is difficult

to recover relaxations that are far outside of the observable range because their contributions

to the response may not be observed or are indistinguishable from the constant c0.

−0.5 0 0.5 1 1.5 2 2.5 3

x 10
−4

0

0.5

1

1.5

t (sec)

−h
(t

)

0.1

Figure 4: An example unit-step time response h(t).
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Figure 5: An example frequency response H(ω) sampled at 21 frequencies over 300-90 kHz. The dotted lines trace out the full range
of the response. The solid lines trace out the measured response, i.e., the observable part for a band-limited EMI system. The solid
circles indicate the samples measured at 21 distinct frequencies. (a) The real part and (b) the imaginary part of H(ω). (c) The complex
response, parameterized by ω, plotted on an Argand diagram (complex plane). (d) The DSRF, where each relaxation is represented by
a stem: the stem location is the relaxation frequency ζk and the stem height is the spectral amplitude ck. The dash-dotted lines in (d)
indicate the observable range.
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A detailed derivation of the relation between (5) and (6), as well as other forms of the

EMI model, can be found in Appendix A. The significance of choosing the particular form

in (6) is that when this expression is linearized, as in the proposed method, the linearized

model results in a matrix with uniform-norm columns. All columns having the same norm

translates to an unbiased estimation of relaxation frequencies, as explained in Appendix A.

The measured EMI response is proportional to the product of the transmitted and

received magnetic fields and the magnetic polarizability tensor of the target being measured

by the EMI sensor (Appendix A). The magnetic polarizability tensor of several canonical

targets can be calculated analytically, and these formulas show how the model parameters

are related to the target’s physical properties such as conductivity, permeability, shape,

size, and orientation [12,16,19,20].

One result of this analysis is that the relaxation frequencies ζk are invariant with re-

spect to the target’s position and orientation relative to the EMI sensor; only the spectral

amplitudes change with orientation and position. Therefore, the DSRF, i.e., the ζk’s and

ck’s, are valuable for target discrimination, and even allow estimation of the target depth

and orientation.

1.2.3 Existing Estimation Methods and Challenges

It is difficult to find a meaningful low-order model for an EMI frequency response. This is

because the modeling process is an ill-posed problem – a small change in H(ω) can lead to

a large change in the DSRF and different DSRFs can generate very similar or even identical

responses. To illustrate the ill-posed nature of the modeling problem, shown in Fig. 6 are

curve fits for the same target response using different spectral models. It is clear that all

four models (spectra) generate a response very close to the measurement. However, the

four spectra are actually very different, which illustrates the ill-posed nature of the inverse

problem.

Several spectrum modeling techniques have been developed in the past few decades for

both continuous and discrete spectra. For continuous spectra, modeling techniques such
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as Tikhonov regularization [21], a nonparametric Bayesian approach [22], and a Monte-

Carlo method [23] have been proposed. In particular, for the Cole-Cole model, existing

methods include nonlinear iterative search, multifold least-squares estimation [24], and a

gradient-lookup-table approach [7].
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Figure 6: A target response (left) fitted to four different spectral models (right): Cole-
Cole, Havriliak-Negami, a general DRT, and the DSRF, plus a standard least-squares fit.
All models fit well but have very different distribution function G(τ). The DRT fit is
obtained using the Tikhonov regularization.

In the discrete case, the modeling problem is equivalent to estimating the parameters

of a sum of exponentials, which is a classic problem that arises in many fields. Several
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notable estimation techniques include iterative nonlinear least-squares fitting, the matrix

pencil method [25, 26], modified Prony’s methods [27, 28] , and complex-curve fitting [29].

While the listed methods can be robust in other fields of science, in the case of EMI spectral

modeling, a major challenge is that the poles are required to be real-valued, but most of

these model-fitting methods can return complex poles. In addition, often these methods do

not perform well when three or more relaxations are present. The goodness of estimation

strongly depends on a good guess of the model order, and is also very sensitive to the initial

guess for the model parameters.

Riggs et al. proposed a differential correction technique that returns only real relaxations,

but the convergence still strongly depends on a good initial guess of the model order. When

the guess of K is poor, the techniques fails to converge [5]. Estimating the unknown model

order is the primary source of DSRF estimation difficulties.

In addition, as a consequence of the ill-posed problem, it is possible to converge well to

a small residual, but obtain a fit that is, in fact, far from the correct solution. This is a

common problem in the DSRF estimation to obtain “good fits but poor estimates,” where

the fitting residual can be minimized but the estimated DSRF is far off. The least-squares

fit in Fig. 6 is a good example of this scenario, where the fitting residual is the smallest of all

methods, but the estimated spectrum is noise-like with oscillatory, self-canceling relaxations.

The nonlinear relationship between H(ω) and ζ often requires a nonlinear iterative

search to fit a response to the model. Some challenges of the search are that 1) the iteration

can settle in local minima that are far from the correct solution, 2) the solution is sensitive

to the initial guess, 3) the returned solution may be complex and lack physical meaning. It

is possible that an estimate is only a good numerical fit, but has no physical significance [30].

Das and McFee provided a detailed examination of these challenges [30]. In summary,

the challenges of DSRF estimation are 1) estimating the model order K, 2) not converging,

3) good numerical fit but poor estimate, and 4) returning complex estimates.

For these reasons, a simplified DSRF model with only one or two relaxations (K = 1 or

2) is often assumed [2, 31, 32]. The goal of this work is to accurately estimate parameters

from the full model without constraining or assuming K.
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1.2.4 Nonnegative Least-Squares (NNLSQ)

The initial effort in this research suggests a constrained linear method that robustly esti-

mates the DSRFs without requiring prior knowledge of the model order and bypasses the

nonlinear relationship between ζ and H(ω) [33, 34]. This is achieved through enumeration

to obtain a linear problem, and then minimization of the squared error with a nonnega-

tive constraint on the spectral amplitudes. The nonnegative constraint effectively reduces

the size of the feasible solution set and eliminates oscillatory and nonphysical solutions.

For example, the oscillatory least-squares solution in Fig. 6 is rejected by the nonnegative

constraint.

While the NNLSQ algorithm performs well, the method presumes nonnegative spectra

for the targets, i.e., ck ≥ 0. This assumption is, in fact, valid for most targets measured

by our system [8, 33], but it is possible that some targets can have a spectrum with both

positive and negative relaxations. A goal of this work is to develop a more general method

that remove the nonnegative constraint.

1.2.5 Proposed Estimation Methods

To robustly estimate the DSRF without the nonnegative constraint but still require no

prior knowledge of K and return only real-valued solutions, as in the NNLSQ, a sparsity-

promoting DSRF estimation method is formulated. The sparsity approach follows the same

sampling and linearization setup as in the NNLSQ, but replaces the nonnegative constraint

with a sparsity-regularization term. The sparsity regularization is shown to deliver robust

estimates without prior knowledge of K and returns only real-valued estimates.

This work further extends the DSRF estimation from the single-measurement case to

estimation using multiple measurements. In the laboratory and the field, multiple mea-

surements are often available for a given target of interest. Because different measurements

from the same target share the same relaxation frequencies, this invariance property can be

exploited to increase the estimation accuracy when multiple measurements are available.

The multiple measurements are utilized simultaneously by recasting the EMI estima-

tion problem into the problem of multiple-measurement vectors (MMV) or jointly-sparse

10



vectors, where vectors sharing the same underlying structure are recovered. The model

parameters can then be estimated through iterative reweighting algorithms. The proposed

MMV method is tested against synthetic, laboratory, and field data, and is demonstrated

to deliver accurate and stable estimates.

To account for the soil response in field measurements, the proposed DSRF estimation

method is also extended to model the soil. A soil model is proposed based on the observation

of a large number of soil responses, of which a subset is shown in Fig. 7. From the soil

measurements, it is observed that the frequency responses follow a simple log-linear trend.

That is,

Hsoil(ω) = γ

(
ln

ω

ω0
+ j

π

2

)
, (7)

where γ and ω0 are model parameters. This model has a linear real part with respect to

the log-frequency and has a constant imaginary part, which agrees with the observed soil

measurements. Using this soil model, an augmented model is developed to consider both

the DSRF and the soil simultaneously. It is shown that the augmented model can also be

solved by the same proposed sparsity-promoting DSRF estimation method.
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Figure 7: The frequency response of soil samples plotted on an Argand diagram. The
real and imaginary part are shown in Fig. 21. The soil responses are collected at various
locations in a testing field.
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1.3 EMI-based Target Discrimination

1.3.1 Existing Discrimination Methods

Several EMI-based landmine discrimination techniques have been developed in the past

decade. Both Bayesian and non-Bayesian classification as well as the continuous and discrete

spectral model have been employed. Fails et al. [6] and Ramachandran et al. [7] both

demonstrated success in detecting mines using the k-nearest-neighbor (kNN) algorithm

based on the EMI model developed by Miller et al., i.e., the Cole-Cole model [14,15]. Using

the Cole-Cole model, the target feature is a vector in R4. In [7], the modeling error is also

included in the feature vector. The kNN labels an unknown target based on the closest

targets in a training set.

Collins et al. [2] and Gao et al. [4] considered the likelihood ratio test applied to both

time and frequency domain data. In [2], it is considered using only the most prominent

relaxation, i.e., K = 1 in (5). In [4], a body-of-revolution model is considered.

Because the Cole-Cole spectrum and the most prominent relaxation are dependent on

the orientation and location of a target, the above discrimination approaches can suffer

from orientation variations of buried targets. The use of the DSRF takes into account this

variation and is considered by Riggs et al. [5] and is also considered in this work.

Riggs et al. suggested identifying targets using a library of relaxation frequencies ob-

tained from training targets [5]. This approach takes into account the orientation and

position variation. The method uses a generalized likelihood ratio test, which results in a

simple minimum least-squares-error decision rule. In a sense, this test is a kNN approach

that considers only the closest neighbor.

1.3.2 Proposed Discrimination Method

In this work, a discrimination based on the estimated DSRF is considered. Figure 8 demon-

strates the consistency of the estimated DSRF across instances of two different types of

targets. For each target type, the EMI responses are collect from independent physical in-

stances buried at different locations and depths. It is seen that instances from the same type

share a consistent DSRF, while the two types clearly have distinct DSRFs. This observation
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agrees with Baum’s theory [12] and is the motivation of DSRF-based target discrimination.

2 3 4 5 6 7

1 

2 

3 

4 

5 

6 

7 

8 

logζ

S
a
m

p
le

 

 

0

0.2

0.4

0.6

(a)

2 3 4 5 6 7

1 

2 

3 

4 

5 

6 

7 

8 

logζ

S
a

m
p

le

 

 

0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 8: Estimated DSRF of landmines. The spectral amplitude ck is represented by the
intensity: the darker the gray, the larger the amplitude. (a) Seven low-metal content, non-
magnetic, moderate EMI response antipersonnel mines. (b) Eight medium-metal content,
magnetic, strong EMI response antipersonnel mines.

Two classifiers are examined for the proposed DSRF discrimination: kNN and the sup-

port vector machine (SVM). The kNN serves as a simple, proof-of-concept DSRF-based

classification. The SVM is a more practical approach as the computation cost is lower for

real-time applications.

To build a complete system for discriminating targets, a model-based soil prescreener is

also developed to detect the presence of metallic objects. The prescreener is based on the

soil model (7), and the prescreener turns out to be a simple least-squares minimizer, which

can be computed efficiently. Combining the prescreener and the DSRF-based classifier, the

proposed discrimination technique is shown to be competitive to existing methods.
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1.4 Outline

The outline of this thesis is as follows: the DSRF estimation method based on a single

measurement vector (SMV) utilizing sparsity is presented in Chapter II; this SMV method

is extended to multiple measurements in Chapter III; the application of DSRF in target

discrimination is demonstrated in Chapter IV, where the soil prescreener is also introduced;

lastly, a conclusion is provided in Chapter V.
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CHAPTER II

SPECTRUM ESTIMATION FROM SINGLE MEASUREMENTS

To robustly estimate the DSRF without the nonnegative constraint from a given EMI fre-

quency response, a sparsity-promoting estimation method is developed. The estimation

problem is first recast into a linear dictionary selection problem by densely sampling the

relaxation frequency space. The linearized problem is then solved by minimizing the least-

squares error regularized with sparsity. Nonconvex iterative sparsity-promoting optimiza-

tion is employed to achieve robust performance. An interpolation is performed after the

optimization step to address the issue if an actual relaxation frequency is split between two

sampled relaxation frequencies [33].

The proposed sparsity-promoting DSRF estimation method is shown to be robust through

tests on synthetic, laboratory, and field measurements. The method gives accurate estimates

and requires no a priori knowledge of the model order and always returns real model param-

eters. An extension to the Earth Mover’s Distance (EMD) [35] is devised to quantify the

estimation accuracy. A simulation framework is also proposed to find the best regularization

parameter used in the sparsity-promoting optimization.

The soil response is also considered when modeling the field measurements. In the

field, a target response is always measured in the presence of soil, so the total response

is composed of the target response, the soil response and the system noise. To take into

account the effect of the soil, a soil model is proposed based on collected soil measurements.

An augmented model is formulated to consider both the DSRF and soil concurrently. This

augmented model is also solved by the sparsity-regularized least-squares.

The DSRF of many field targets from different types are examined using the proposed

estimation method, and it is observed that targets of the same type have a similar DSRF.

This observation affirms the idea to use DSRF as a signature for target discrimination, and

this is explored in Chapter 4.
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2.1 Method Formulation

When the target response is measured at N distinct frequencies, (6) can be written in

matrix form:



H(ω1)

H(ω2)

...

H(ωN )


=



1 1−jω1/ζ1
1+jω1/ζ1

1−jω1/ζ2
1+jω1/ζ2

. . . 1−jω1/ζK
1+jω1/ζK

1 1−jω2/ζ1
1+jω2/ζ1

1−jω2/ζ2
1+jω2/ζ2

. . . 1−jω2/ζK
1+jω2/ζK

...
...

...
. . .

...

1 1−jωN/ζ1
1+jωN/ζ1

1−jωN/ζ2
1+jωN/ζ2

. . . 1−jωN/ζK
1+jωN/ζK


︸ ︷︷ ︸

Z



c0

c1

c2

...

cK


b = Zc, (8)

where ωmin = ω1 < ω2 < · · · < ωN = ωmax, b ∈ CN is the observation vector, c ∈ RK+1

the spectral amplitude vector augmented by the shift c0, and Z ∈ CN×(K+1) a matrix

containing information about the relaxation frequencies ζ. The dimension of the matrix Z

is dependent on the number of relaxations present in the spectrum, i.e., the model order.

In the case of a simple thin wire circular loop, there is only one relaxation, so Z has two

columns; the first column is always one to account for c0.

2.1.1 Sampling The Relaxation Frequency Domain

To linearize the DSRF estimation problem, a large set of sampled relaxation frequencies

{ζ̃m : m = 1 . . .M}, M � K, are generated by sampling within a range of possible or ob-

servable relaxation frequencies [ζ̃min, ζ̃max]. There are several ways to sample the relaxation

frequency domain. The goal is to sample densely enough to ensure an actual relaxation

frequency ζk will be close to some sampled relaxation frequencies ζ̃m.

Because the EMI data are measured at a wide range of frequencies, the observable

relaxation frequencies also fall in a wide range of frequency. To sample in a high dynamic

range, the relaxation frequencies are uniformly logarithmically spaced, i.e.,

log ζ̃m+1 = log ζ̃m + ∆, (9)

where ∆ is a fixed spacing between two ζ̃ in log-space.
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This sampling scheme turns out to be similar to the one proposed by Austin et al. [36],

where the sampling is nonuniform based on the Fisher information:

ζ̃m+1 = ζ̃m + α

[
N∑
n=1

(
ωn

ω2
n + ζ̃2

m

)2
]− 1

2

. (10)

The parameter α controls the number of samples given a frequency range. The two sampling

schemes produce similar sample points (Fig. 9). Uniform sampling is used in this work

because it is simpler.
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Figure 9: Samples generated from uniform log-ζ sampling and non-uniform sampling based
on the Fisher information.

The expression (10) comes from [36]

ζ̃m+1 = ζ̃m + α I(b(ζ̃m))−1/2, (11)

where I is the Fisher information and b(ζ̃m) ∈ CN is the frequency response due to one

relaxation frequency ζ̃m measured at N frequencies. Assuming the measurement noise is

Gaussian, then [36]

I(b(ζ̃)) ∼ Jb(ζ̃)HJb(ζ̃), (12)

where Jb(ζ̃) is the Jacobian of b(ζ̃) and the superscript H denotes the Hermitian transpose.

The Jacobian is

Jb(ζ̃) =

[
∂

∂ζ̃
b(ζ̃; ω1)

∂

∂ζ̃
b(ζ̃; ω2) . . .

∂

∂ζ̃
b(ζ̃; ωN )

]T
, (13)

where

∂

∂ζ̃
b(ζ̃; ωn) =

∂

∂ζ̃

1− jωn/ζ̃
1 + jωn/ζ̃

=
2jωn(

ζ̃ + jωn

)2 (14)
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With some simple algebra, it can be shown that

Jb(ζ̃m)HJb(ζ̃m) =
∑
n=1

∣∣∣∣∣∣∣
2jωn(

ζ̃ + jωn

)2

∣∣∣∣∣∣∣
2

=
N∑
n=1

4

(
ωn

ω2
n + ζ̃2

m

)2

. (15)

Substituting (15) into (11), (10) is obtained.

2.1.2 Linearizing The Problem

Using the sampled relaxation frequencies, (8) can be rewritten as



H(ω1)

H(ω2)

...

H(ωN )


︸ ︷︷ ︸

b

=



1 1−jω1/ζ̃1
1+jω1/ζ̃1

1−jω1/ζ̃2
1+jω1/ζ̃2

. . . 1−jω1/ζ̃M
1+jω1/ζ̃M

1 1−jω2/ζ̃1
1+jω2/ζ̃1

1−jω2/ζ̃2
1+jω2/ζ̃2

. . . 1−jω2/ζ̃M
1+jω2/ζ̃M

...
...

...
. . .

...

1 1−jωN/ζ̃1
1+jωN/ζ̃1

1−jωN/ζ̃2
1+jωN/ζ̃2

. . . 1−jωN/ζ̃M
1+jωN/ζ̃M


︸ ︷︷ ︸

A



c̃0

c̃1

c̃2

...

c̃M


︸ ︷︷ ︸

x

+e

or

b = Ax+ e, (16)

where c̃m ∈ R are the spectral amplitude estimates corresponding to each ζ̃m,A ∈ CN×(M+1)

the overcomplete dictionary, and e ∈ CN the modeling error. The solution vector x ∈ RM+1

is a weighted selection vector containing the shift estimator c̃0 followed by the spectral am-

plitude estimators. The matrices Z and A differ in that Z is constructed with the actual

relaxation frequencies while A is the dictionary constructed with sampled relaxation fre-

quencies.

Because M � K, a good solution for x will have many zero elements, i.e., x will be

sparse. The intent is to use x to pick out the ζ̃m that are close to the actual relaxation

frequencies ζk. By assigning a zero value to c̃m that correspond to the ζ̃m that are not

near any ζk, the corresponding ζ̃m can be made ineffective. When the zeros are properly

assigned and ck properly assigned to c̃m, (8) and (16) becomes almost identical and the

error is small. In this case, x is sparse, having only a few nonzero entries.
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2.1.3 Sparsity-promoting Minimization

While it is true that a good solution for x produces a small error in (16), directly minimizing

the error often yields solutions far from the correct answer. The challenge in obtaining the

correct x is that M is much greater than N , so the system in (16) is underdetermined and

there is not an unique x to minimize the error:

arg min
x

||b−Ax||22. (17)

Any vector in the null space of A can be added to x without changing the error. There

are many ways to select a least-squares (LSQ) solution. The Moore-Penrose pseudoinverse

picks the LSQ solution that has the smallest `2 norm. One can also compute a LSQ solution

with the fewest nonzero components. However, neither of these LSQ solutions produces the

correct spectrum, as demonstrated in Fig. 6. One reason is that the error in (16) will

not be zero due to modeling error because it is unlikely that all ζk overlap with some ζ̃m.

Details about existing techniques and the difficulties of solving such a system can be found

in [30,37,38].

Knowing that the solution vector x should be sparse, the LSQ optimization (17) can

be regularized to promote sparsity. Sparsity-regularized least squares turn out to be an

effective way to obtain good solutions for x.

There are several ways to perform sparsity-regularized least squares, including basis

pursuit (`1-minimization), matching pursuit, iteratively reweighted `1-minimization (IRL1),

and iteratively reweighted least squares (IRLS or FOCUSS). It has been shown that the

latter two nonconvex iterative reweighted algorithms, IRL1 and FOCUSS, produce solutions

that are more sparse compared to the non-reweighted ones [39]. In addition, IRL1 and

FOCUSS are equivalent under certain circumstances. To simplify the discussion, only IRL1

is considered here. The relationship between IRL1 and FOCUSS is discussed in detail in

Chapter 3, where multiple measurements are considered.

To estimate the DSRF using sparsity-regularized least squares, the following optimiza-

tion problem is solved:

arg min
x
||b′ −A′x||22 + λ||x||pp , 0 ≤ p ≤ 1 (18)
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where A′ =

Re(A)

Im(A)

 , b′ =

Re(b)

Im(b)

,

and λ is the regularization parameter. Separating the real and imaginary parts in A makes

the whole system real. Ideally, in the optimal x, only those c̃m with corresponding ζ̃m that

are near a true ζk will be nonzero, and they will take on the correct spectral amplitudes

ck. It follows that a DSRF can then be deduced from the nonzero estimated c̃m and their

corresponding ζ̃m.

The `p-regularized least squares solution for p < 1 can be approximated by the itera-

tively reweighted `1 algorithm proposed by Candès et al. [40]. The weights are updated as

suggested in [39], and the ε-regularization technique is adopted from the same paper. In

summary, (18) is approximated by (see also [41]):

Algorithm 1: Approximated `p-regularized least squares

Input: A′, b′, p, λ, x0

1 xn ← x0

2 for k ← 0 to −8 step −1 do
3 ε← 10k

4 repeat
5 xn−1 ← xn

6 wni ← (|c̃n−1
i |+ ε)p−1

7 xn ← arg min ||b′ −A′x||22 + λ
∑M+1

i=1 wni |c̃i|
8 until ||xn − xn−1||2 <

√
ε/100

9 return xn

The `1 minimization problem in step 7 is solved by l1 ls, a Matlab optimizer proposed

by Kim et al. [42]. It has been observed that normalizing the input data b, as well as the

columns of A′, to have an uniform `2 norm increases the accuracy of estimation. This is

why the EMI model in the form in (6) is chosen over other forms – it produces a uniform-

column-norm dictionary; details are provided in Appendix A. While it is often suggested to

initialize x0 using the least-squares solution [39], it is observed that setting entries of x0 to

all ones also seems to be effective and converges faster. The nonzero entries of x selected

by (18) along with the corresponding ζ̃m are the relaxations needed in the estimated DSRF,

Ŝ = {(ζ̂k, ĉk) : k = 1 . . . K̂}.

20



2.2 Estimation Results With Synthetic Data

The proposed estimation method is tested against synthetic and laboratory data to show

its functionality, accuracy, and stability. The hardware system used in laboratory and

field measurements is a wideband EMI sensor operating at 21 frequencies approximately

logarithmically distributed over the range 300 Hz–90 kHz, which is a span of 2.5 decades [8].

The synthetic data is generated in accordance with the hardware specification.

The range of ζ for estimation is chosen such that log(ζ̃min) and log(ζ̃max) are 2.45 and

6.62, respectively, i.e., a span of 4.17 decades. All estimations are performed with M = 100,

and all presented spectra are normalized such that
∑ |ci| = 1. Spectral amplitudes less than

10−5 are not displayed. All frequency responses are normalized such that ‖b‖2 = 1. Unless

specified, p = 0.5 is chosen as a representative case. In assessing the signal strength, the

signal-to-noise ratio (SNR) is used. The signal power is computed by
∑N

i=1 |H(ωi)|2/N .

The noise power in synthesized data is equal to the variance of the noise.

The regularization parameter λ is chosen based on the method described in Section 2.5.

Results presented in this section may achieve higher accuracy with a more sophisticated λ

selection rule. The purpose of this section is to demonstrate the usability of the proposed

algorithm using a simple λ selection rule.

Notation : ζ and c are the true/theoretical relaxation frequencies and spectral amplitudes;

ζ̂ and ĉ are the estimates.

2.2.1 Dissimilarity Measure Between Two DSRFs

To evaluate the goodness of estimation, it is necessary to define a measure to quantify the

similarity between two DSRFs. It is not straight forward, however, to compare two sparse

spectra because 1) the number of relaxations can be different and 2) small misalignments

of two relaxation frequencies often occur. For these two reasons, the standard Euclidean

distance is not an ideal distance measure between two DSRFs. For example, in Fig. 10(a)

the estimate and the correct solution are very similar but with a large Euclidean distance

of 0.71 units of c because of one small misalignment in the ζ axis. This issue is further

complicated when the number of relaxations in two spectra are not the same. If two DSRFs
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S and Ŝ have the same model order, the Euclidean distance between the two is K̂∑
k=1

(ck − ĉk)2

−2

. (19)

The Earth Mover’s Distance (EMD) is a measure that takes into account misalignments

and mismatching model orders [35, 43]. The EMD measures how much “work” it takes to

morph one spectrum into another. The metaphor is that one spectrum represents piles of

earth with volume ĉk located at the associated ζ̂k. The other spectrum represents holes in

the ground with capacity ck located at ζk. The EMD is proportional to the least amount

of work needed to move as much earth as possible into the holes. Work is defined to be the

amount of earth moved times the distance traveled. Intuitively, the distance would simply

be the difference between ζ̂k and ζk in log-space. This is true when ck and ĉk have the same

sign. To accommodate opposite signs, the distance function dij between two relaxations

(ζi, ci) and (ζ̂j , ĉj) is defined to be

dij =

 | log ζi − log ζ̂j | , ciĉj ≥ 0

1 + | log ζi − log ζ̂j | , ciĉj < 0
,

which penalizes relaxations with different signs by adding a constant to the distance. This

constant can be replaced by other quantities, such as exp(−α| log ζi − log ζ̂j |), where α

determines the decaying rate. Spectra are made nonnegative and normalized prior to the

EMD computation. The EMD is measured in decades because it is examined in log-ζ space.

The EMD compares two spectra as a whole, so the effect of very small amplitude re-

laxations is tiny in the EMD, and neglecting these small components amounts to assuming

they are near the noise level of the measured frequency response. See Appendix C for details

about the EMD. For simplicity, it is sufficient to say that EMD quantifies the similarity

between two DSRFs.

Some examples of the EMD are shown in Fig. 10. It is observed that the EMD reflects

the similarity between two DSRFs. On the other hand, the `2 Euclidean distance returns a

similar number regardless of how similar two DSRFs are to each other.
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(a) (b)

(c) (d)

Figure 10: Examples of the `2 Euclidean distance and the EMD between two DSRFs,
labeled by the diamonds and the squares. (a) The two spectra are very similar but the `2
distance is large while the EMD is small. (b) The spectra are less similar compared to (a),
which is reflected in the higher EMD, but the `2 distance remains the same. (c) Spectra
with different model orders. (d) Two very different spectra.

2.2.2 Synthetic Six-relaxation DSRF

The proposed sparsity-promoting estimation method is tested on a six-relaxation DSRF

synthesized at 70 dB SNR with additive white Gaussian noise (Fig. 11). This is a case that

cannot be handled by traditional nonlinear parameter optimization [30], or the nonnegative

linear method [33]. The actual DSRF and the frequency response, along with their fits, are

shown in Fig. 11. All six relaxation frequencies are recovered by solving (18) with p = 0.5.

The estimation is nearly perfect, because the estimated model parameters are real, and the

deviation from the true answer is small; the EMD is 0.09 decade, for p = 0.5.

When this spectrum is estimated with p = 1 using l1 ls many extra relaxations are

introduced by the fitting process; for p = 1, the EMD is 0.10 decades. Real targets are not

likely to have a spectrum with so many small relaxations around a strong relaxation. In

fact, Baum argues that physical relaxation frequencies are discrete [12]. However, the several

small relaxations when using p = 1 give a denser distribution of relaxations, resembling a
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continuous spectrum. In this sense, p < 1 gives a sparser solution that more accurately

resembles a physical spectrum even though this may not always be reflected in the EMD

measure. The fits of the frequency response is also displayed in Fig. 11(a), and it is seen

that both p = 0.5 and p = 1 produce a good fit to the frequency response.
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Figure 11: Estimation of a synthetic six-relaxation DSRF with p = 0.5 and p = 1. (a) The
synthesized frequency response and two model fits. (b) The actual DSRF and its estimates.

2.2.3 Signal-to-Noise Ratio

To see how the proposed method performs in noise, a Monte Carlo simulation of the goodness

of estimation versus SNR is performed. For each SNR, 100 samples are generated, and

each sample has a DSRF with four relaxations. The relaxation frequencies are uniformly
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distributed at random over [ζmin, ζmax], and the spectral amplitudes are generated similarly

over [−1, 1]. For each DSRF estimate, the goodness of estimation is measured by the EMD

between the estimate and truth.

The simulation result, in Fig. 12, shows the robustness of the estimation method at

different SNRs. The EMD between the estimate and the truth increases as the SNR de-

creases. This suggests that the proposed method is usable in a range of SNR where the

EMD is below some threshold. Visually, spectra with an EMD below 0.1 are considered

similar, those with an EMD above 0.2 exhibit noticeable differences, but may still resemble

each other. In our laboratory measurements, a typical SNR for loop targets is 70 dB.
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Figure 12: Monte Carlo simulation of goodness of estimation (EMD) vs. SNR performed
using a four-relaxation DSRF. The error bars indicate the range of EMD between the 10th
and 90th percentiles. Sample size is 100 per SNR.

2.3 Laboratory Data

To verify the functionality of the algorithm, the proposed method is applied to the lab-

oratory measurement of a target where the theoretical DSRF is known [44]. The target

consists of three mutually-orthogonal copper loops. The loop diameters and thicknesses are

3/20, 4/30, and 5/36, respectively in cm/AWG1. The orientation and position relative to

the EMI sensor are chosen to demonstrate the positive and negative spectral amplitudes.

The measured frequency response of this configuration is shown in Fig. 13(a), and the SNR

is about 38 dB. The estimated DSRF is displayed in Fig. 13(b). The estimate and theory

agree well, and the EMD between the theoretical and estimated DSRF is 0.10 decades.

1American Wire Gauge
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Figure 13: (a) Measured frequency response of three mutually orthogonal loops, its fit,
and the theoretical response. (b) Theoretical and estimated DSRFs of the response in (a).

Next, changes in the DSRF as the target moves relative to the EMI sensor are studied.

The same target configured at a fixed orientation is displaced at different positions along

a horizontal axis, denoted x. The vertical distance between the target and sensor is 6 cm.

The EMI sensor is located at x = 0. Samples of the measured target responses are shown

in Fig. 14(a); their corresponding spectra are in Fig. 14(b). Theoretical results are also

shown. Overall, the theory and measurement agree. The disagreement at x = −0.5 may be

because of approximations in the model and/or inaccuracies in the positions measured in

the experiment.

As expected from the theory, while the frequency response changes dramatically as the

target moves along the x axis, the corresponding change in the spectral domain only occurs

in the spectral amplitudes. The three dominant relaxation frequencies remain unchanged.

The proposed method successfully estimates the spectra that agree with this phenomenon.
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Figure 14: The plots share the same annotation as Fig. 13. (a) Frequency responses
of the three mutually orthogonal copper loops at different locations. (b) Theoretical and
estimated DSRFs of the corresponding responses in (a). The SNR is measured in dB, x
positions in cm, and EMD in decades.

All three relaxation frequencies are consistently estimated. The extra relaxations all have

small amplitudes that can be safely ignored. This invariant property of the relaxation

frequencies makes the DSRF valuable especially for target discrimination.
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2.4 Field Data

The proposed method is applied to a data set, acquired during a field test, which contains

62 types of targets, including 26 types of landmines as well as various types of metallic and

nonmetallic clutter. The testing field is divided into 11 lanes, each lane containing 20 grid

cells, so there are 220 grid cells total. About 145 measurements are collected per grid.

The primary objective of estimating the DSRF from field measurements is to verify the

functionality of the proposed method for realistic field data, and to study the consistency

of DSRFs from targets of the same type. Because targets of the same type should have the

same physical composition, their DSRFs are expected to be the same. It is demonstrated in

the following section that targets from the same type do have very similar estimated DSRFs.

Targets of different types are also observed to have very different DSRFs, in general.

The field measurements are collected by an EMI measurement cart, shown in Fig. 1

in Chapter 1. The EMI acquisition hardware used has the same specification as described

in Section 2.2, and details are found in [8]. As the cart is pushed over a target, the fre-

quency response of the target is collected sequentially, as illustrated in Fig. 2. A segment

of collected responses (magnitude only) at 21 frequencies is shown in Fig. 15. Although

multiple measurements are available per target, in this chapter only one measurement is

considered per target. The one measurement selected has the largest response magnitude

in the grid cell. In Fig. 15, this corresponds to the peak of the strongest lobe in a grid cell,

which usually occurs when the EMI sensor is directly above or nearly above the target. The

multiple lobes seen in Fig. 15 are a result of filtering the measurements [8]. For field mea-

surements, the SNR is estimated by the signal-to-background ratio, where the background

is considered to be primarily due to the soil. The field measurements used in this work have

a background signal power of about −130 dB, as shown in grid 70 in Fig. 15.

In field measurements, the soil response is also measured in addition to the target

response and noise. In Section 2.4.2, the frequency response of soil and its effect on the

DSRF are examined. An “augmented dictionary” that includes the DSRF model and a soil

model is proposed to simultaneously model the target response and the soil response. From

preliminary results, it is observed that including the soil model in the DSRF estimation

28



process produces estimates very similar to those obtained when ignoring the soil response.

This observation suggests that it is safe to ignore the soil response when estimating the

DSRF of targets from field measurements. However, more simulations and tests should be

done to study the effect of soil on target responses. The results presented in the following

section are obtained ignoring the effect of soil.

68 69 70 71
−200

−100

0
HC O

Grid number

dB

Figure 15: A short segment of the field measurements acquired by the EMI cart. Shown
are the magnitude of the frequency responses; each curve represents one frequency. The
letters denote the type of target buried in the grid cell.

2.4.1 Estimating the DSRF of Various Targets

Several types of landmines are examined to study the performance of the proposed method

when applied to field measurements and to investigate the consistency of DSRF from land-

mines of the same type. Each type of landmine has multiple instances buried at different

depths in different grid cells. The buried depth affects the strength of the measured re-

sponse. One sample of the measurements is used per instance, and the DSRF of each

sample is estimated and then plotted together with others of the same type. The spectral

amplitudes are represented by the color intensity. The DC magnetization of targets is also

examined at the end of this section.

Eight Type-A mines, a low-metal content, nonmagnetic, and moderate EMI response

antipersonnel mine, are examined. The SNR ranges from about 45 to 60 dB. The fre-

quency response of the eight instances are shown in Fig. 16(a) and the estimated DSRFs in

Fig. 16(b). All eight Type-A mines exhibit consistency in the relaxation frequencies and the

spectral amplitudes. The DSRFs are very similar, and the average EMD between pairs of

mines is 0.052 decades. The estimated DSRFs also generate good curve fits in the frequency

domain, shown in Fig. 16(a).
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Eight Type-B mines, a medium-metal content, magnetic, strong EMI response antiper-

sonnel mine, are examined. The SNR ranges from about 55 to 70 dB. The frequency re-

sponses are shown in Fig. 16(c) and the estimated DSRFs in Fig. 16(d). The samples exhibit

consistency in the relaxation frequencies and the spectral amplitudes. Samples #1 and #3

differ from other samples slightly near 3.7 decades where two relaxations are combined into

one, but the difference is small. The average EMD between pairs of mines is 0.1 decades.

The estimated DSRFs generate good curve fits in the frequency domain.

To demonstrate the advantage of the sparsity-promoting DSRF estimation method over

the NNLSQ, four samples of the Type-K mine, a medium-metal content, magnetic, moderate

EMI response antipersonnel mine, are fitted using both methods. The SNR ranges from

about 52 to 60 dB. The frequency responses and the estimated DSRFs are shown in Fig. 17.

From the frequency response plots, it is observed that sample #4 has a relaxation with

a negative ck because the real part of the response is non-monotonic. This property was

discovered during an early phase of this research [34] and is used as the basis for using

the NNLSQ because most filtered field target responses exhibit a monotonic real part [33].

However, sample #4 does not follow this trend and has a negative component. The NNLSQ

method returns a DSRF estimate for #4 that is quite different from other samples, and the

fit in the frequency response is also not very good. The low frequency part, where the real

part is non-monotonic, is not fitted by NNLSQ. On the other hand, the sparsity-promoting

method property recovers the negative relaxations in #4 and the estimated DSRF agrees

with other samples.

More examples of estimated DSRFs from field targets are shown in Fig. 18 and Fig. 19.

Here is a list of description for the example targets:

• Type-H and -I: low-metal content, magnetic, moderate response antitank mines.

• Type-V and -W: low-metal content, magnetic, moderate response antipersonnel mines.

• Type-C: a low-metal content, magnetic, weak response antipersonnel mine.

• Type-D: a low-metal content, slightly magnetic, strong response antipersonnel mine.

• Type-E: a low-metal content, magnetic, weak response antipersonnel mine.

• Type-L: a medium-metal content, magnetic, strong response antipersonnel mine.
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Consistent DSRFs within a target type are generally observed. Deviations do occur, but

mostly in relaxations with a small spectral amplitude, e.g., Type-E mines in Fig. 19(c). A

small spectral amplitude contributes only a small amount to the EMD. Another observation

is the combining or splitting of relaxations, such as the Type-W mines in Fig. 18(d). Often

the combining of relaxations happens at lower SNRs, where there is not enough resolution

to separate the two relaxations. This is reflected in the λ selection, where a lower SNR

gives a higher λ, encouraging a sparser solution, as discussed in Section 2.5. Nevertheless,

the impact of combining and splitting is inherently reduced in the EMD. Targets with a

weak EMI response, such as Type-C mines in Fig. 19(a), are also observed to have more

variations in the estimated DSRF and higher EMDs.

On the other hand, targets of different types tend to have very distinct DSRFs. For ex-

ample, when comparing Type-A and Type-B mines, Type-A mines only have two relaxations

and Type-B mines have six relaxations. Even if the number of relaxations are the same, the

spectral amplitudes can be different. For example, Type-H and Type-V mines both have

four relaxations but Type-H has its stronger relaxations around 6 decades, whereas Type-V

has its strongest relaxation near 5 decades. There are mines from the same family that do

have similar DSRFs, such as Type-V and Type-W mines. The characteristics of each target

type observed in the DSRF suggest a DSRF-based target discrimination, which is discussed

in Chapter 4.

Estimates of H(0) =
∑

k=0 ĉk for several mine types are shown normalized in Fig. 20.

This constant is due to the DC magnetization of the target. For example, Type-A mines are

nonmagnetic and the estimated H(0) is close to zero, as shown in Fig. 20(a). In contrast,

Type-V and -W mines are strongly magnetic and have a relatively large H(0). Type-I

and -B are magnetic but have a weaker magnetic response than Type-V and -W. Shown

in Fig. 20(b) are some cases with poor H(0) estimates. For example, sample #3 of the

Type-H mine has a weak target response and an out-of-band relaxation that is not fitted

well, making
∑

k=0 ĉk a poor estimate for H(0). Sample #5 of the Type-C mine also has a

very weak target response at 18 dB SNR, and H(0) is likely corrupted by the soil.
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Figure 16: Frequency response and estimated DSRF of Type-A (a,b) and Type-B (c,d) mines measured in the field. (a) The frequency
response of eight Type-A mines (solid lines) and their fits (square markers). (b) Estimated DSRFs from the eight frequency responses.
(c) The frequency response of eight Type-B mines and their fits. (d) Estimated DSRFs.
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Figure 17: Comparison of the proposed sparsity method (a,b) and the NNLSQ (c,d). The measured frequency responses (solid lines)
and their fits (square markers) are shown in (a) and (c), and the estimated DSRF in (b) and (d). Colors red and blue are used to
represent positive and negative spectral amplitudes, respectively.
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Figure 18: Examples of estimated DSRFs from field targets. The average EMD listed below are in decades and SNR in dB. (a) Six
Type-H mines; EMD=0.093, SNR=47. (b) Six Type-I mines; EMD=0.13, SNR=39. (c) Four Type-V mines; EMD=0.11, SNR=42. (d)
Four Type-W mines; EMD=0.13, SNR=44.
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Figure 19: Examples of estimated DSRFs from field targets. The average EMD listed below are in decades and SNR in dB. (a) Eight
Type-C mines; EMD=0.2, SNR=26. (b) Eight Type-D mines; EMD=0.085, SNR=82. (c) Eight Type-E mines; EMD=0.093, SNR=26.
(d) Four Type-L mines; EMD=0.043, SNR=85.
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Figure 20: Normalized estimated H(0) for several mine types. The normalization factor
is
∑

2ĉk. (a) Good and consistent H(0) estimates. (b) Mine types with instances of poor
H(0) estimates due to low SNR and out-of-band relaxations.

2.4.2 Soil Response and Soil Model

To study the frequency response of soil and its effect on the DSRF, soil responses from the

field are collected and examined. These measured frequency responses are collected at grid

cells reported to have no objects buried, such as grid 70 in Fig. 15. The frequency response

of a subset of these soil responses are plotted in Fig. 21. It is observed that the frequency

dependence of the soil responses share a similar trend. The real part has a linear trend with

respect to the log-frequency, and the imaginary part tends to be a constant [8, 45].

From these observations, the following soil model is suggested:

HG(ω) = γ

(
ln

ω

ω0
+ j

π

2

)
, (20)

where γ and ω0 are model parameters. More details about this model can be found in [46].
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Figure 21: Instances of measured EMI response of soil. (a) The real part has a linear
trend with respect to the log-frequency, and (b) the imaginary part tends to be a constant.

To fit a measured response to the soil model, (20) is rewritten as

HG(ω) = p1 + p2

(
lnω + j

π

2

)
, (21)

where p1 = −γ lnω0 and p2 = γ are model parameters. For a soil response bG measured at

N frequencies,

bG = Gp + noise , (22)

where

G =



1 lnω1 + jπ/2

1 lnω2 + jπ/2

...
...

1 lnωN + jπ/2


and p =

p1

p2

 .

To consider the target response in the presence of soil, as described in Section 1.1, the
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total response bTotal can be modeled as

bTotal = b+ bG + noise, (23)

where b is the target response. Combining the DSRF model (16) and the soil model (22),

the model (23) can be written as a set of linear equations:

bTotal = Ax+ Gp + e, (24)

where e accounts for the modeling error as well as the measurement noise. The two matrices

A and G can then be consolidated into an augmented coefficient matrix Φ. That is,

bTotal = Φφ+ e, (25)

where

Φ =



1 lnω1 + jπ/2 1−jω1/ζ̃1
1+jω1/ζ̃1

1−jω1/ζ̃2
1+jω1/ζ̃2

. . . 1−jω1/ζ̃M
1+jω1/ζ̃M

1 lnω2 + jπ/2 1−jω2/ζ̃1
1+jω2/ζ̃1

1−jω2/ζ̃2
1+jω2/ζ̃2

. . . 1−jω2/ζ̃M
1+jω2/ζ̃M

...
...

...
. . .

...
...

1 lnωN + jπ/2 1−jωN/ζ̃1
1+jωN/ζ̃1

1−jωN/ζ̃2
1+jωN/ζ̃2

. . . 1−jωN/ζ̃M
1+jωN/ζ̃M


and φ =



c̃0 + p1

p2

c̃1

c̃2

...

c̃M


. (26)

The shift coefficient in the DSRF model c̃0 and the soil model p1 are combined in the

augmented form, represented by the first entry of φ.

Using the augmented model (25), the target response and the soil response can be

modeled simultaneously. The approach to solving (25) is identical to that of solving the

DSRF modeling problem (18), that is, minimize the squared error ||bTotal −Φφ||22 subject

to a sparsity regularization ||φ||pp. The sparsity regularization works for the augmented

problem because the sparsity of the solution increases only by one, to account for the second

column of Φ, which corresponds to the soil model. Therefore, the solution φ should still be

sparse. In short, the target response and the soil response can be modeled simultaneously

by solving the sparsity-regularized least-squares (18) with the dictionary A replaced by the

augmented matrix Φ.
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The effect of the soil on the field target response is considered here. This is done by

comparing DSRF estimates obtained with the soil model via the augmented form (25) and

without the soil model (16). Several landmines are examined, and it is found that the two

approaches give very similar and sometimes identical estimates. Four examples are given

in Fig. 22 and Fig. 23.

In Fig. 22, eight Type-A and eight Type-B mines are examined. For Type-A mines,

including the soil model does not produce different DSRF estimates. For Type-B mines,

including the soil model produces DSRF estimates that are very similar to those obtained

when not using the soil model. Only slight shifts in the relaxation frequencies are observed.

The averaged EMD between the two sets is 0.023 decades, which is computed by averaging

over the instances the EMD between the DSRFs obtained with and without the soil model.

In Fig. 23, eight Type-C and eight Type-D mines are examined. For Type-C mines,

including the soil model produces almost identical DSRF estimates. The average EMD

between the two sets is 0.0082 decades. For Type-D mines, including the soil model produces

DSRF estimates that are very similar to those obtained not using the soil model. A slight

difference is observed in relaxation frequencies near 3.5 and 6 decades. The averaged EMD

between the two sets is 0.027 decades.

The four types of mines shown in Fig. 22 and 23 cover a wide range of SNR, from

18 dB to 71 dB, and the consistency between the DSRFs estimated with or without the

soil model is observed in all cases. The results show that estimating the DSRF without

the soil model (16) produces a DSRF that is very similar to that obtained with the soil

model (25). An explanation for this observation is that the soil model does not fit well to

a sparse DSRF model, so it is, in a sense, orthogonal to the DSRF terms. Therefore, not

including the soil term in the modeling does not result in the soil response “leaking” into

the DSRF terms. Another reason is simply that the soil response is negligible when the

target response is much stronger than the soil response. In either case, the results suggest

that it is safe to ignore the soil in estimating the DSRF from field measurements. However,

further simulations should be performed to study and quantify the range of SNR over which

the soil can be ignored.
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Figure 22: Comparisons of the estimated DSRF when including the soil model (a,b) and not including the soil model (c,d). Shown in
(a) and (c) are Type-A mines, and the two sets are identical. Shown in (b) and (d) are Type-B mines, and the average EMD is 0.023
decades between the two sets.
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Figure 23: Comparisons of the estimated DSRF when including the soil model (a,b) and not including the soil model (c,d). Shown in
(a) and (c) are Type-C mines, and the average EMD is 0.082 decades between the two sets. Shown in (b) and (d) are Type-D mines,
and the average EMD is 0.027 decades between the two sets.
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2.5 Choosing the Regularization Parameter λ

In this section, it is first examined the behavior of the proposed method in relation to the

regularization parameter λ, and then a simple λ selection rule is proposed exploiting the

observed properties of λ. All discussions and figures presented here assume p = 0.5 unless

otherwise specified.

To understand how the goodness of fit changes with λ and SNR, a cross-validation-

like simulation is conducted. First, a collection of synthetic spectra are built with different

model orders and a variety of distributions of relaxations. For each spectrum at a fixed SNR,

the spectrum is estimated 100 times for each λ within a range, and the average goodness

of fit, measured by the EMD between the available truth and the estimate, is recorded.

This is done for a range of SNRs. The simulation result for a four-relaxation spectrum, as

an example, is shown in Fig. 24. Not only is the EMD surface well-behaved (i.e., smooth)

with respect to the SNR and λ, but more importantly the surface itself is convex-shaped.

Thus, at each SNR, the minimum EMD is achievable by a unique λ. The wide valley of

the surface also shows that the goodness of fit is not very sensitive near the optimal λ that

gives the minimum EMD per SNR.
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Figure 24: Monte Carlo simulation of the goodness of estimation (EMD) of a four-
relaxation spectrum at different SNR’s and λ’s.
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Simulations of spectra for other model orders and distributions also exhibit the same

property (Fig. 25). Moreover, the valleys of the EMD surface all occur in nearly the same

SNR-λ region. In other words, the λ that produces the minimum EMD at a given SNR

is quasi-independent of the model order. Figure 26 shows the averaged EMD of different

model orders in Fig. 25. The resulting surface still exhibits the properties described above.

This allows us to pick a near-optimal λ based solely on the SNR.
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Figure 25: Same simulation as in Fig. 24, but for spectra of different model orders (1 to
6). Each spectrum constitutes one surface in the figure. All surfaces have their minimum
in the same SNR-λ region.

In Fig. 26, the optimal λ at each SNR which is also plotted. Using the wide-valley

property, the near-minimum EMD can be achieved by choosing λ’s that are near the optimal

λ in the valley. Here the optimal λ is approximated with a semilog function of SNR. This

is done by fitting the optimal log-λ curve with a linear function. Weights may be added to

promote certain SNR’s that are more important. For our problem setup, the λ is chosen by

(also shown in Fig. 26)

log λ = −0.05 · SNR− 2.2 (27)

In practice, this log-λ selection rule that is linear in SNR allows the regularization parameter

to be determined with negligible computation time. When processing the laboratory data,

(27) is used along with an estimate of the SNR to determine λ for use in Algorithm 1.
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The same empirical method can be repeated for other p’s, and the result is also a linear

relationship between log λ and SNR.
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Projection of the optimal λ path
onto the EMD surface

Figure 26: Average of EMD surfaces in Fig. 25. The curve with asterisk markers traces
out the optimal λ’s. The line with square markers is the approximated optimal λ curve
used to select λ in practical estimation.

Figure 27 compares the goodness of estimation of a four-relaxation target using the linear

log-λ selection rule and the optimal λ which uses the true spectrum that is not available in

practice. There is a slight increase in the EMD when the linear log-λ selection rule is used,

which is reasonable and expected. The increase is acceptable and hence the linear log-λ

selection rule is an appropriate λ selector.

Also shown in Fig. 27 are the performances of other p values. It is seen that p < 1

gives more accurate results than p = 1 when the optimal λ is used, but this advantage is

significantly diminished when the linear log-λ selection rule is used. While this lessens the

advantages of using p < 1, it is emphasized that p = 1 tends to give estimates with many

relaxation frequencies while p < 1 gives sparser spectra which are more physically accurate

(see Section 2.2.2). It is possible that both the accuracy and the sparsity advantages for

p < 1 could be obtained with a better λ selection rule. Lastly, since the performance of a

certain p value is dependent on the λ selection rule used, different optimum p values would

be determined if the λ selection rule is changed.
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Figure 27: Goodness of fit using the linear log-λ selection rule for several p’s. The true
spectrum is the same as in Fig. 24. Dash-dot curves denote the optimal λ, solid lines denote
the linear log-λ selection rule.
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CHAPTER III

SPECTRUM ESTIMATION FROM MULTIPLE MEASUREMENTS

In the process of acquiring the EMI response of a target, often the target response is

measured at different target-to-sensor orientations and locations. For example, this happens

when an EMI sensor collects data while moving over a target, resulting measurement views

of the target from different angles, as illustrated in Fig. 2 in Chapter 1. It seems reasonable

that more accurate estimates of the DSRF can be obtained with more views or snapshots

of the target, for two reasons: 1) the relaxation frequencies are constant in different views

and 2) a relaxation that vanishes (ck = 0) in one view can appear in a different view, as

illustrated in Fig. 13 in Chapter 2.

To utilize the multiple measurements often available for a target, a multiple-measurement

vector (MMV) DSRF estimation method is developed in this chapter. The MMV method

exploits the property of orientation and position invariance of the relaxation frequencies,

and obtains more accurate estimates by encouraging different measurements (views of a

target) that share a common set of relaxation frequencies. The proposed MMV method is

applied to synthetic, laboratory, and field data, and the performance is demonstrated to be

robust and better than the SMV approach.

The MMV DSRF estimation is a generalization of the single-measurement vector (SMV)

approach (Chapter 2), but the MMV generalization does more because the SMV does not

exploit the invariance of the relaxation frequencies. The MMV has an advantage over the

SMV by taking into account this physical invariance property.

A “row-sparsity measure” for matrices is introduced to encourage DSRF estimates for

the same target to share the same relaxation frequencies. This measure formulates the

MMV problem in a form similar to the SMV, allowing SMV techniques to be extended to

the MMV case in a straightforward manner.
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The MMV method follows the same framework as the SMV: 1) sample the relaxation fre-

quency domain, 2) construct an overcomplete dictionary, 3) perform a sparsity-promoting

optimization, and 4) interpolate. Because steps 1) and 2) are identical to the SMV ap-

proach, the discussion here is focused on the MMV sparsity-promoting optimization and

interpolation.

3.1 Method Formulation

A single EMI response measured at N frequencies can be modeled by a set of sampled

relaxation frequencies using the following matrix equation



H(ω1)

H(ω2)

...

H(ωN )


︸ ︷︷ ︸

b

=



1 1−jω1/ζ̃1
1+jω1/ζ̃1

1−jω1/ζ̃2
1+jω1/ζ̃2

. . . 1−jω1/ζ̃M
1+jω1/ζ̃M

1 1−jω2/ζ̃1
1+jω2/ζ̃1

1−jω2/ζ̃2
1+jω2/ζ̃2

. . . 1−jω2/ζ̃M
1+jω2/ζ̃M

...
...

...
. . .

...

1 1−jωN/ζ̃1
1+jωN/ζ̃1

1−jωN/ζ̃2
1+jωN/ζ̃2

. . . 1−jωN/ζ̃M
1+jωN/ζ̃M


︸ ︷︷ ︸

A



c̃0

c̃1

c̃2

...

c̃M


︸ ︷︷ ︸

x

+e,

or

b = Ax+ e, (28)

as described in Section 2.1.3. For multiple measurements b1, . . . , bL, one can form a system

of equations [
b1, b2, . . . , bL

]
= A

[
x1,x2, . . . ,xL

]
+

[
e1, e2, . . . , eL

]
, or (29)

B = AX +E, (30)

where B ∈ CN×L has columns of b1, . . . , bL, and similarly for X ∈ R(M+1)×L and E ∈

CN×L. If the L measurements come from the same target, then x1, . . . ,xL share the same

location of nonzero entries because b1, . . . , bL share the same relaxation frequencies, as a

consequence of the orientation and location invariance. This means the matrix X should

be row sparse, having only nonzero entries on certain rows.

In other words, the invariance property of the relaxation frequencies translates to the

row-sparse property of the matrix X. Row sparsity is precisely the property one can exploit
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in an algorithm that estimates the DSRF of a target from multiple measurements.

3.1.1 Row-Sparsity Measure

To promote solutions that are row-sparse, a measure is needed to quantify the degree of

row sparsity. One straightforward measure is to collapse the matrix X row-wise by the

vector norm || · ||q [47], resulting in a sparse vector. This can be done via the function

R`q : RM+1×L → RM+1 defined by

R`q(X) =



||x1,1 x1,2 . . . x1,L||q
||x2,1 x2,2 . . . x2,L||q

...
...

||xM+1,1 xM+1,2 . . . xM+1,L||q


=



||x1||q
||x2||q

...

||xM+1||q


, (31)

where ||xm||q =

(
L∑
l=1

|xm,l|q
)1/q

, (32)

xm ∈ RL is the mth row of X, and xm,l are the entries of the matrix X.

The vector R`q(X) should be a sparse vector, and familiar sparsity measures for single

measurements, such as the `1 norm [48] or the diversity measure [49], can be applied to

R`q(X). This composite row-sparsity measure of a matrix is denoted J (p,q)(X) and is

defined by [39,40,49]

J (p,q)(X) =


∑M+1

m=1 log (||xm||q + ε) , p = 0

||R`q(X)||pp =
∑M+1

m=1 ||xm||pq , 0 < p ≤ 1
, (33)

where ε > 0 is a small positive real number introduced for stability.

The purpose of the log-sum function and the `p quasi-norms in (33) is to approximate

the `0 quasi-norm (|| · ||0), which is the number of nonzero entries in a vector. Fig. 28 gives

the contour plots of the different `p quasi-norms as well the log-sum function. The log-sum

function is a closer approximation to the `0 quasi-norm than the `1 norm and other p < 1

quasi-norms. The log-sum function has a slope that vanishes near the axes like || · ||0 does.

On the other hand, the `1 norm is less similar to || · ||0. Other functions have also been

suggested to better approximate the `0 quasi-norm [39,40,50].
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Figure 28: Surface plots of various (quasi-)norms in R2. (a) `0 quasi-norm. (b) `1 norm.
(c)
∑

log(|xi|+ ε). (d) `1/2 quasi-norm.

While there are conditions that guarantee minimizing the `1 norm is equivalent to finding

the minimum `0 quasi-norm [51,52], these conditions are not practical for DSRF estimation

when there is measurement noise and/or an imperfect model (dictionary). On the other

hand, it can be shown that minimizing the `p quasi-norm for p < 1 or the log-sum function

via reweighted algorithms, gives sparser solutions and more robust performance [39,40].

3.1.2 MMV Optimization

Using the row-sparsity measure J (p,q)(X), the invariance of the relaxation frequencies can

be exploited to effectively model an EMI signal. To estimate the model parameters, one

optimizes the problem

arg min
X

||A′X −B′||F + λJ (p,q)(X), (34)

where A′ =

Re(A)

Im(A)

 , B′ =

Re(B)

Im(B)

 ,
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|| · ||F is the Frobenius norm and λ is a regularization parameter that controls the trade-off

between sparsity and the modeling residual.

This optimization (34) for MMV is similar to that of the SMV (Section 2.1.3) but with

the vectors replaced by matrices, the vector norm replaced by the Frobenius norm, and the

`p norm replaced by J (p,q)(X). The real and imaginary parts are again separated to ensure

real-valued solutions.

Equation (34) is in the form of a regularized MMV problem, and can be solved by

iteratively reweighted MMV techniques, such as M-FOCUSS or M-IRL1 [53,54]. Algorithms

to solve this problem are examined in Section 3.2, and their performance is compared in

Section 3.3, where M-FOCUSS is chosen as the default solver for its robustness.

The above optimization requires selecting the regularization parameter λ, as explained

in Section 2.5, which is nonintuitive. An alternative optimization is to use a threshold,

θ ∈ RL, to specify the difference between the modeled signals and the measurements, which

usually contains unwanted signals such as noise or soil response. The alternative threshold

MMV method is

arg min
X

J (p,q)(X) subject to C`q(B −AX) < θ, (35)

where C`q : CN×L → RL is a function like R`q but operates along the columns of a matrix.

That is,

C`q(E) = [||e1||q, . . . , ||eL||q]T , (36)

where ||el||q =

(
N∑
n=1

|en,l|q
)1/q

. (37)

This form provides more physical intuition such as limiting the measurement noise. How-

ever, the solution to (35) is more sensitive to θ than the regularized approach. This threshold

MMV can be iteratively solved similar to the implementation of the regularized M-IRL1 [54].

3.1.3 Interpolation of Relaxation Frequencies

Sampling in the relaxation frequency domain always introduces the issue of an actual re-

laxation ζ occurring between two consecutive sampled relaxation frequencies ζ̃a and ζ̃b:

ζ̃a < ζ < ζ̃b. (38)
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When this happens, solutions to (34) tend to return nonzero values in the rows correspond-

ing to ζ̃a and ζ̃b. In addition, the magnitudes of these two entries reflect how close ζ is to

a sample point. For example, as ζ move closer to ζ̃a from ζ̃b, ||xa|| increases while ||xb||

decreases. The interpolation scheme for the single measurement case [33] can be extended

to the MMV:

log ζ̂ =
1

L

L∑
l=1

∑b
m=a |xm,l| log ζ̃m∑b

m=a |xm,l|
, (39)

where ζ̂ is the estimated ζ. This interpolation also applies to more than two consecutive

nonzero rows, i.e., b > a+ 1.

An alternative way to interpolate the estimated ζ is

log ζ̂ =

∑b
m=a ||xm|| log ζ̃m∑b

m=a ||xm||
, (40)

which is similar to (39). But (39) is preferred because the interpolation is done per mea-

surement (the l-dependence) and then the average across l is taken, which reduces variance

in the estimates. On the other hand, interpolation based on the row norm ||xm|| loses in-

formation in each measurement and can be overwhelmed by one measurement that is much

stronger than others.

3.1.4 Estimation of Spectral Amplitudes

Once the relaxation frequencies have been identified, the spectral amplitudes can be found

via a standard linear least-squares minimization using the estimated relaxation frequencies

ζ̂. The estimated (interpolated) relaxation frequencies are denoted by ζ̂1, ζ̂2, . . . , ζ̂K̂ , where

K̂ is the estimated number of relaxation frequencies. Because X is row-sparse, K̂ � M .

When the estimate is accurate, K̂ ≈ K, if not K̂ = K.

First, a coefficient matrix Ẑ ∈ CN×K̂ is constructed:

Ẑ =



1 1−jω1/ζ̂1
1+jω1/ζ̂1

1−jω1/ζ̂2
1+jω1/ζ̂2

. . .
1−jω1/ζ̂K̂
1+jω1/ζ̂K̂

1 1−jω2/ζ̂1
1+jω2/ζ̂1

1−jω2/ζ̂2
1+jω2/ζ̂2

. . .
1−jω2/ζ̂K̂
1+jω2/ζ̂K̂

...
...

...
. . .

...

1 1−jωN/ζ̂1
1+jωN/ζ̂1

1−jωN/ζ̂2
1+jωN/ζ̂2

. . .
1−jωN/ζ̂K̂
1+jωN/ζ̂K̂


. (41)
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Unlike the dictionary A that is underdetermined, Ẑ is likely overdetermined, i.e., N > K̂.

Therefore, the residual from the linear least-squares minimization

min
ĉl
||bl − Ẑĉl||22 (42)

is unlikely to be zero. This residual, which is perpendicular to the column space of Ẑ, is

regarded as the noise/unwanted signal rejected by the EMI model. In addition, because

the estimated ζ are sparse and adjacent ζ̃ are interpolated, ζ̂k are spaced-out, implying

the columns of Ẑ are linearly independent. Because Ẑ is overdetermined and has linearly

independent columns, there is a unique solution to the linear least squares (42), which can

be obtained via the pseudoinverse.

To ensure only real-valued spectral amplitudes, a real-valued matrix Ẑ
′ ∈ R2N×K̂ is

constructed similar to that of A′ in (18). The same arguments for Ẑ being overdetermined

and having linearly independent columns transfer to Ẑ
′
. Therefore, the spectral amplitudes

can be estimated using the pseudoinverse Ẑ
′+

:

ĉl = Ẑ
′+
b′ l = 1 . . . L, or (43)

Ĉ = Ẑ
′+
B′. (44)

For each measurement bl, the estimated DSRF is Ŝl = {(ζ̂k, ĉk,l) : k = 1 . . . K̂}. The

estimated relaxation frequencies ζ̂k are l-independent, invariant from measurement to mea-

surement.

3.2 MMV Optimizers

Several algorithms have been proposed to solve the MMV problem. In this section, these

solvers are examined to select the ones that are best suited for the DSRF estimation. Five

algorithms are considered: M-BP [47, 55], M-OMP [47], M-FOCUSS [53], ReMBo (with

BP) [56], and M-IRL1 [54].

A set of noiseless simulations were performed to evaluate these algorithms. The simu-

lation results suggest that the non-convex optimizations, M-FOCUSS (p = 0) and M-IRL1,

deliver the most robust performance. These two methods are further examined. Regulariza-

tion is introduced to accommodate noisy measurements. When regularized, the simulation
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result using noisy measurements suggest that M-FOCUSS is slightly better than M-IRL1.

In addition, because M-FOCUSS takes less computation time, it is chosen to be the default

solver for DSRF estimation in this work.

3.2.1 Algorithms

Most of the MMV algorithms are extensions of existing SMV recovery methods. Extension

of the Basis Pursuit to the MMV problem (M-BP) is considered in [47, 55], where the

objective is to minimize the number of rows containing nonzero entries while satisfying

B = AX. The problem is formulated as

min ||R`q(X)||0 subject to B = AX, (45)

where || · ||0 is number of nonzero entries in a given vector. As in the SMV problem, (45)

is NP-hard but can be made convex as an `1 minimization problem:

min ||R`q(X)||1 subject to B = AX. (46)

When the nonzero rows in X are sparse enough, (46) recovers the same solution as (45).

The condition for which (45) and (46) are equivalent can be found in [47, 55]. It was also

shown that an exact recovery does not depend on the `q norm chosen for R`q .

On the other hand, greedy algorithms have also been extended to accommodate MMV

problems [53, 57, 58]. Various MMV methods based on Matching Pursuit (MP) have been

proposed, such as the MMV orthogonal matching pursuit (M-OMP). The condition for

exact recovery was also established [47,53].

From a slightly different approach, the ReMBo method proposed in [56] solves a MMV

problem by recasting it into a series of SMV problems. The method can incorporate both

convex relaxation and greedy algorithms, and is shown to be robust.

Sparsity could be further enhanced through iteratively reweighting. In particular, it

was shown in [39, 49] that sparse solutions for a SMV problem can be found via iterative

reweighted least-squares (IRLS), with which the FOCUSS algorithm [59] is identified. A

M-FOCUSS algorithm that extends FOCUSS to the MMV problem was introduced in [49].
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The M-FOCUSS algorithm solves the problem

min J (p,2)(X) subject to B = AX. (47)

In addition, it was also shown in [40] that sparse solutions can be obtained via an iterative

reweighted `1 algorithm (IRL1), when minimizing a log-sum objective function. As a part

of this research, the IRL1 algorithm is extended to the MMV case (M-IRL1) [54], which

iteratively reweights the M-BP algorithm. The M-IRL1 algorithm solves the problem

min J (0,1)(X) subject to B = AX. (48)

The following section examines the performance of these MMV algorithms.

3.2.2 Algorithm Performance – Noiseless

To assess the performance of each MMV algorithm, a simulation using noiseless measure-

ments is conducted. Noisy simulations are considered in later sections that follow. Let

N = 20, M = 30, and L = 5. The entries of the real-valued matrix A are independent and

identically distributed standard Gaussian random variables. The multiple-measurement

vectors are constructed by B = AX0 where X0 has K rows with nonzero entries. The

locations of the K rows are selected uniformly at random, and the nonzero entries of X0

are drawn as in A. An exact recovery is obtained when X ≡X0. The above simulation is

repeated 500 times per MMV method. From the simulation result (Fig. 29), it is observed

that M-FOCUSS (p = 0) and M-IRL1 have the highest empirical rate of exact recovery at

different K. These two methods are further examined for estimating the DSRF.
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Figure 29: Performance of MMV methods for noiseless data.
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3.2.3 M-IRL1 and M-FOCUSS

It is shown here for noiseless measurements, the special case of M-FOCUSS with p = 0

and M-IRL1 solve almost the same problem. The slight difference is in the choice of the

row-norm R`q , where M-FOCUSS uses an `2 row-norm and M-IRL1 uses an `1 row-norm.

The M-IRL1 algorithm [54] minimizes the log-sum objective

J (0,1)(X) =
∑
m=1

log (||xm||1 + ε) (49)

through an iteratively reweighted `1 algorithm. The formulation of the algorithm is devel-

oped in Appendix B. In short, the algorithm performs a series of `1 minimizations:

X(i) = arg min
X

||W(i)R`1(X)||1 subject to B = AX,

where W(i) = diag[w
(i)
1 , w

(i)
2 , . . . , w

(i)
M+1]. (50)

The weights are updated by

w(i+1)
m =

1

||xm
(i)||1 + ε

, m = 1, . . . ,M + 1. (51)

On the other hand, the M-FOCUSS algorithm [53] minimizes the diversity measure

J (p,2)(X) = ||R`2(X)||pp =
∑
m=1

||xm||p2, 0 ≤ p ≤ 1 (52)

subject to B = AX. By solving the Lagrangian derived from (52), an iterative reweighted

least squares is obtained [53]:

X(i) = W̃(i)AH(AW̃(i)AH)−1B, (53)

where W̃(i) =diag[w̃
(i)
1 , . . . , w̃

(i)
M+1], the superscript H denotes the Hermitian transpose, and

the weights are updated by

w̃(i+1)
m =

(
||xm

(i)||2
)p−2

. (54)

When p = 0, the weight is
(
||xm

(i)||2
)−2

, and M-FOCUSS is, in effect, minimizing

J (0,2)(X) =
∑
m=1

log ||xm||2, (55)
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which is very similar to the objective of M-IRL1, J (0,1)(X). This is true because, it can be

readily shown, the partial derivative of J (0,2)(X) with respect to xm,l is

∂J (0,2)(X)

∂xm,l
=

∂

∂xm,l

∑
m=1

log

(
L∑
l=1

x2
m,l

)1/2

= ||xm||−2
2 xm,l,

and when substituted into the derivation of M-FOCUSS in [53], the coefficient of xm,l,

||xm||−2
2 , is identified with the update weight, which is the same as the weight in (54) with

p = 0. That is, by iterating (53) using the update equation (54) with p = 0, the M-FOCUSS

algorithm effectively minimizes a log-sum objective.

The M-FOCUSS algorithm with p = 0 and M-IRL1 are almost equivalent except that

M-FOCUSS uses R`2 (q = 2), whereas M-IRL1 is derived using R`1 . However, the choice

of q for the row-norm should not make a significant difference because the log-sum behaves

similar to the `0 quasi-norm, which counts the number of nonzero elements regardless of

the magnitude. Indeed, Chen and Huo [47] showed that under certain conditions, the row-

norm can be any arbitrary vector norm, and the problem min ||R`q(X)||0 (45) can be solved

exactly by solving the problem min ||R`q(X)||1 (46).

3.2.4 Regularization

To account for noise in the measurements and modeling error, regularized versions of M-

FOCUSS and M-IRL1 are used. To regularize M-IRL1, the iterated minimization with an

equality constraint in (77) is replaced with the following relaxed problem:

X(i) = arg min
X

||AX −B||F + λ||W(i)R`1(X)||1. (56)

The regularization parameter λ balances the emphasis between the modeling error and the

sparsity.

The regularized M-FOCUSS iteratively computes

X(i) = W̃(i)AH(AW̃(i)AH + λI)−1B, (57)

where I ∈ RN×N is the identity matrix [53].
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Since regularization effectively loosens the equality constraints, the regularized algo-

rithms can accommodate actual relaxation frequencies that are not in the dictionary. Sim-

ulations are performed to assess the performance of each regularized algorithm in the pres-

ence of noise. Comparisons between the two algorithms are shown in Section 3.3.3 along

with other numerical simulations.

3.3 MMV Simulations with Synthetic Data

Simulations are conducted to verify the validity of the proposed MMV method and to

gain understanding of its behavior under various conditions. Simulations demonstrated

here include a four-relaxation target (Section 3.3.1), the performance of MMV vs. SMV

(Section 3.3.2), performance comparison between different solvers (Section 3.3.3), and per-

formance comparison for various number of measurements L (Section 3.3.4).

In Section 3.3.3, M-FOCUSS (p = 0) is found to be robust and fast to solve the regu-

larized MMV optimization problem (34). Thus, for the rest of the work, unless otherwise

specified, M-FOCUSS (p = 0) is assumed to be the MMV solver. The regularization pa-

rameter λ chosen by a simple function of SNR is described in Section 3.6.

3.3.1 Synthetic Four-relaxation DSRF

The proposed MMV method is tested using a four-relaxation DSRF synthesized at 60 dB

SNR with additive white Gaussian noise. The spectral amplitudes are assigned according

to an uniform distribution between −1 and 1. Ten measurements (L = 10) are used. The

estimation result using M-FOCUSS is shown in Fig. 30. The relaxation frequencies ζ as well

as the spectral amplitudes are correctly recovered. All samples share the same estimated

ζ because of the sparsity-promoting term J (p)(X). The average estimation error (EMD) is

0.014 decades.

The same set of data is also processed using one measurement per estimate (SMV). The

result is shown in Fig. 31 where the SMV estimates are seen to have more variation in the

estimated ζ. The averaged EMD is 0.035 decades, which is still quite low.
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Figure 31: Theoretical and estimated DSRF of a four-relaxation target. Blue circles are
the MMV estimates; red squares the SMV estimates.

3.3.2 Performance vs. Signal to Noise Ratio

To study how the proposed method performs in noise, a Monte Carlo simulation is per-

formed. The true spectrum is from a target with a four-relaxation DSRF including nega-

tive relaxation coefficients ck. A set of L measurements is synthesized using the same four
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relaxation frequencies randomly distributed in [ω1, ωN ]. The spectral amplitudes are ran-

domly generated but constrained to have the same sign per relaxation frequency ζk. This

sign constraint improves the results for the SMV method, because the L measurements are

averaged together to get the SMV data which increases its SNR.

Figure 32 shows the performance of the MMV and SMV methods using the synthesized

measurements. The simulation is set up with L=10 measurements per trial and 1000 trials

per SNR. The simulation result suggests that the MMV method has a significant advantage

over the SMV approach even though the simulation is setup to favor the SMV method.

Compared to the performance of the SMV method, the MMV gives a smaller EMD error

by about half a decade at a given SNR.
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Figure 32: Monte Carlo simulation on goodness of estimation vs. SNR. The error bar
indicates the 10th and 90th percentile.

3.3.3 Solver Performance Comparison

A simulation is conducted to examine the performance of two algorithms for solving the

MMV problem: regularized M-FOCUSS and M-IRL1. The simulation is similar to the one

in Section 3.3.2 but with L = 20 and K = 4. The Monte Carlo sample size is 1000 per

SNR. The simulation result shows that M-FOCUSS on average delivers a lower estimation

error than M-IRL1 (Fig. 33). In addition, from the recorded computation time (Fig. 34),
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M-FOCUSS runs about 1000 times faster than M-IRL1. The computation time of both

methods is observed to be independent of the SNR.

The M-IRL1 algorithm is implemented using the CVX package which implements convex

optimization under MATLAB [60]. Because CVX implements a general convex optimization

method, further speedup for M-IRL1 can be achieved via a customized implementation.
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Figure 33: Monte Carlo simulation on goodness of estimation vs. SNR. L = 20 and K = 4.
Sample size is 1000 per SNR.
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Figure 34: Monte Carlo simulation on computation time per estimation vs. SNR. L = 20
and K = 4. Sample size is 1000 per SNR.

In an earlier investigation of this research [54], a simulation similar to the one in Sec-

tion 3.3.2 is performed, but the optimization problem is complex-valued, and the simulation

uses relaxation frequencies that must be in the dictionary. That is, for any actual ζk there
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exists a ζ̃m such that ζk = ζ̃m. Because the relaxation frequencies are in the dictionary,

it is possible to exactly recover them even under noise. In this case, the performance is

measured by the exact recovery rate. In [54] M-IRL1 is observed to have a higher probabil-

ity than M-FOCUSS to exactly recover the relaxation frequencies. This is because in [54],

M-FOCUSS is not constrained to consider only real-valued answers, which degrades its per-

formance. On the other hand, M-IRL1 returns only real-valued solutions as a consequence

of its implementation. In the simulation presented here, both methods are constraint to

real-valued solutions by separating the real and imaginary part, as in (34).

3.3.4 Performance vs. Number of Measurements

When the estimation accuracy versus the number of measurements L is examined, it is

observed that the estimation accuracy increases as L increases, which agrees with intuition

(Fig. 35). The simulation performed here is similar to the one in Section 3.3.2, but the

optimal regularization parameter is used instead of the near-optimum λ described later in

Section 3.6. The intent is to examine the best possible performance for a given L. Because

the differences in performance are small, the optimal λ is used to help differentiate the

performance curves.

10 20 30 40 50 60 70

10
−2

10
−1

SNR(dB)

E
M

D

1

2

3

4

5
6
8

10
15

20

Figure 35: Monte Carlo simulation on estimation accuracy vs. SNR for different L, as
annotated. The number of relaxations is K = 4. Sample size is 1000 per SNR.
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3.3.5 Performance vs. p

A simulation is conducted to examine the estimation accuracy versus SNR for different

choices of p, a parameter used in the cost function J (p,q)(X). From the simulation result

(Fig. 36), it is observed that there is a significant performance difference between p = 1

and p < 1. This is different from the single-measurement case, where the performance of

p < 1 is somewhat similar to that of p = 1 (Fig. 27). On the other hand, the performance

of MMV improves significantly once p is less than 1.

The computation time versus SNR for different values of p are also recorded (Fig 37).

It is interesting to note that the computation time is lower for lower values of p.
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Figure 36: Monte Carlo simulation on estimation accuracy vs. SNR for different p values,
as annotated. K = 4. Sample size is 1000 per SNR.
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3.4 Laboratory Data

The functionality of the MMV estimation method is verified using laboratory data where

the theoretical DSRF is available. An automated, non-metallic measurement facility is used

to measure the EMI responses of a target at various positions and orientations relative to

the sensor [44]. The proposed MMV method is observed to produce accurate estimates and

is more robust than the single-measurement counterpart.

A target that consists of three mutually orthogonal copper loops is examined. The loop

diameters and thicknesses are 3/20, 4/30, and 5/36, respectively in cm/AWG(American

Wire Gauge). The target is configured at a fixed orientation and is displaced at different

positions along a horizontal axis (x). The vertical distance between the target and the

sensor is 5 cm. The EMI sensor is located at x = 0. The response of the target is measured

at nine different x locations.

For the MMV method, these nine responses (L = 9) are used simultaneously to obtain

an estimate of the DSRF. For the SMV method, a DSRF is estimated at each location.

Improving the SNR by averaging the nine responses is not as effective for the laboratory

data as it is for the synthetic data, because the spectral amplitudes are not constrained to

be of the same sign and can cancel when averaged, lowering the SNR.

The estimates from these two methods are shown in Fig. 38. Both methods produce

satisfactory estimates. However, the MMV method gives a more accurate estimate of the

relaxation frequencies than the SMV. The estimates from the SMV have more variation in

the relaxation frequencies and sometimes extra relaxations are introduced. The estimation

error of the two methods is recorded in Table 1. The MMV method has a smaller averaged

EMD of 0.127 decades than that of the SMV, 0.157 decades.

Table 1: Estimation error (EMD) of the three-loop target
x (cm) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

SMV 0.1329 0.0741 0.3902 0.3762 0.1718 0.0948 0.0564 0.0724 0.0437

MMV 0.0750 0.0461 0.1716 0.3231 0.1915 0.1231 0.0886 0.0704 0.0505
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Figure 38: Estimation of the DSRF of the three mutually orthogonal copper loops at nine
different x locations. (a) Black diamonds are the theoretical DSRF, blue circles the MMV
estimates, and red squares the SMV estimates. (b) A 3D view of the estimated DSRFs that
shows the consistent and accurate relaxation frequencies estimated by the MMV.
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3.5 Field Data

The MMV method has also been applied to the field data where measurements are corrupted

by various factors, including the soil and thermal perturbations. The field measurements

used in this section are the same set of data used in Section 2.4, where targets are buried

at various depths in grid cells. For DSRF estimation using multiple measurements, the ten

strongest measurements in a grid cell are used (L = 10). Consistent DSRFs are observed

for targets of the same type, indicating the functionality of the proposed MMV method.

Ten types of targets are examined, and the DSRFs are estimated using the M-FOCUSS

algorithm. For two types of targets, the M-IRL1 is also used for comparison.

Type-A and Type-B mines are modeled using both M-FOCUSS and M-IRL1. The

description of the mines can be found in Section 2.4. These mines have moderate to strong

EMI responses. The results of the estimated DSRF using these two solvers are shown

in Fig. 39. Both methods provide stable DSRF estimates, but the estimates are slightly

different. Because the actual DSRF is unknown for the field targets, it is not clear which

solver returns more accurate estimates. Nevertheless, both solvers return self-consistent

DSRFs that can be used as a feature for target discrimination. For Type-A mines, the

average distance among the estimates are 0.047 decades for M-FOCUSS and 0.079 decades

for M-IRL1. For Type-B mines, the average EMDs are 0.088 decades for M-FOCUSS and

0.091 decades for M-IRL1.

More results of the MMV DSRF estimation are shown in Fig. 40 and Fig. 41. As with

the SMV case, the DSRFs obtained using the MMV method are, in general, consistent

within a type. Some of the MMV-estimated DSRFs are the same as those obtained using

the SMV method, such as the Type-W mines in Fig. 18(d) and Fig. 40(d). For some mines,

such as the Type-V mines in Fig. 40(c), the MMV method seems to have a higher resolution

and recovers more relaxations, which are observed in the SMV only when the SNR is higher.

On the other hand, for targets like the Type-H mines, the MMV returns DSRFs that are

slightly less consistent when compared to the SMV, even though the average EMDs are

similar.

From the field data, the MMV method does not seem to show a significant improvement
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in the consistency of the estimated DSRF when compared to the SMV method. This

result is different from what is observed in the synthetic and laboratory data, where the

MMV achieves a higher accuracy in the estimated DSRF compared to the SMV. Overall,

in the field measurements the MMV does not produce more consistent DSRFs, nor does

it produce less consistent DSRFs. The lack of the expected performance gain in the field

measurements might be caused by the nonuniform SNRs across the measurements, which

affects how the regularization parameter λ is chosen. In the following section, a more

sophisticated λ selection scheme is proposed. For this section, it is sufficient to demonstrate

the functionality and stability of the MMV DSRF estimation method.
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Figure 39: Estimated DSRFs of eight Type-A mines using (a) M-FOCUSS and (c) M-IRL1. The SNR ranges from about 45 dB to
60 dB. Estimated DSRFs of eight Type-B mines using (b) M-FOCUSS and (d) M-IRL1. The SNR ranges from about 55 dB to 70 dB.
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Figure 40: Examples of estimated DSRFs from field targets using MMV. The average EMD listed below are in decades and SNR in
dB. (a) Six Type-H mines; EMD=0.098, SNR=47. (b) Six Type-I mines; EMD=0.16, SNR=39. (c) Four Type-V mines; EMD=0.13,
SNR=42. (d) Four Type-W mines; EMD=0.14, SNR=44.
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Figure 41: Examples of estimated DSRFs from field targets using MMV. The average EMD listed below are in decades and SNR in dB.
(a) Eight Type-C mines; EMD=0.19, SNR=26. (b) Eight Type-D mines; EMD=0.13, SNR=82. (c) Eight Type-E mines; EMD=0.12,
SNR=26. (d) Four Type-L mines; EMD=0.048, SNR=85.
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3.6 Choosing the Regularization Parameter λ

A simulation is performed to optimally select λ via the trade-off between the modeling

error and sparsity. The λ-SNR simulation for the MMV is similar to that of the SMV

(Section 2.5), except that there is an additional parameter L to consider. For each L, the

simulation is identical to the SMV.

As in the SMV case, it is observed that the optimal λ that gives the minimum estimation

error is quasi-independent of the model order (Fig. 42). In addition, the EMD (estimation

error) surfaces are well-behaved and smooth with respect to the SNR and λ. To obtain

a λ-SNR relation independent of the model order, an average of the EMD surface across

different model orders is taken (Fig. 43). The averaged surface is smooth and has a “wide

valley” – indicating the estimation error is not sensitive near the optimal λ.
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Figure 42: Monte Carlo simulation of the goodness of estimation (EMD) of spectra of
different model orders. L = 10.

For the averaged surface, the λ at each SNR that gives the minimum EMD is roughly

linear. For L = 10, a linear approximation of the optimal λ curve is

log λ = −0.059 · SNR− 2.44 (58)

Better approximations can be achieved through higher order polynomials or splines.
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Figure 43: The average of EMD surfaces of various model orders, i.e., the average of the
surfaces in Fig. 42. The curve with asterisk markers traces out the optimal λ’s. The line
with square markers approximates the optimal λ’s. The number of measurements is L = 10.

The MMV λ selection is in fact more complicated than that of the SMV because mea-

surements can have different SNRs. The simulation suggested above, however, assumes a

uniform SNR across measurements. To bridge the gap between the uniform SNR simulation

and the nonuniform SNR which occurs in practice, a simple mean-regularization-parameter

λ̄ can be used. That is,

log λ̄ =
1

L

L∑
l=1

log λl =
1

L
log

L∏
l=1

λl, (59)

where λl is the regularization parameter for lth measurement. This mean-λ works well when

the SNRs do not vary drastically, and it is demonstrated in the field data the functionality

of this method.

A more comprehensive λ-SNR simulation can be performed to account for the varying

SNRs, which may lead to more consistent field DSRF estimates. Two factors can be included

in the current simulation setup. The first is to assign the multiple measurements with a

nonuniform distribution of signal power while keeping the noise power constant. A reason-

able distribution could be parabolic-shaped, which resembles the signal power distribution

in the recorded field measurements (e.g., Fig. 15). The second factor is the soil response in

the simulation. Either synthesized or field-measured soil responses can be considered.
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CHAPTER IV

TARGET DISCRIMINATION

The concept of discriminating targets based on the relaxations of a target is well known [5,

12], but the inability to obtain good DSRF estimates has been a limiting factor [30]. Using

the DSRF estimation methods developed in this work, it is now possible to discriminate

targets based on the DSRF.

Recall that the EMI response of a target can be modeled by the expression

H(ω) = c0 +

K∑
k=1

ck
1− jω/ζk
1 + jω/ζk

, (60)

where the relaxation frequencies ζk are intrinsic to the target and are invariant with respect

to orientation and location. The relaxation frequencies naturally serve as a good signature

or fingerprint for a target. The spectral amplitudes ck change with respect to orientation

and location, so the ck are usually not a ideal signature. However, in the case of landmine

targets, most landmines are buried at fixed orientations so the changes in ck are consistent.

In this work, the strategy is to use both the relaxation frequencies and the spectral

amplitudes for target discrimination, i.e., use the DSRF S = {(ζk, ck) : k = 1 . . .K}. The

methods developed in this chapter can be readily adjusted to discriminate targets using

only the relaxation frequencies by replacing the spectral amplitudes with a constant. This

constant should be normalized such that
∑

k=1 ck = 1.

To visualize how target discrimination based on the DSRF is possible, consider the plots

shown in Fig. 44 for several instances from two types of landmine. It is clear the two mine

types have very different DSRF fingerprints – Mine Type-A has two relaxations and Mine

Type-B has six relaxations. In addition, the spectral amplitudes for each type of mine are

self-consistent. Therefore, it is possible to differentiate the types of targets based on the

DSRF. More examples of targets exhibiting different DSRFs can be found in Section 2.4 and

3.5. While multi-class classification is possible, in this chapter only two classes, landmine

and non-landmine, are considered to give a working example of DSRF-based discrimination.
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Figure 44: Estimated DSRF of real landmines. The spectral amplitude is represented by
the intensity: darker the gray, larger the amplitude. (a) Eight Type-A mines: low metal
content, nonmagnetic, and moderate EMI response antipersonnel mines. (b) Eight Type-B
mines: medium metal content, magnetic, and strong EMI response antipersonnel mines.

To quantify the dissimilarity between two spectra, the Earth Mover’s Distance (EMD)

is used. For example, the EMD can be used to quantify the distance between Type-A and

Type-B mines by averaging the distance between all pairs of DSRF from the two types.

This can be done for instances from all types of mine available as well as clutter objects.

By doing so, a similarity map is obtained (Fig. 45). The similarity map is a symmetric

matrix of EMD between all pairs of DSRFs. The diagonal is zero because that is the EMD

between a DSRF and itself which is zero.

The map shows that, in general, mines of the same type are similar to each other,

as indicated by the dark blocks on the diagonal. On the other hand, targets of different

types are dissimilar, indicated by the white color off-the-diagonal. More importantly, land-

mines are, overall, different from the clutter, and this suggests that landmine and clutter

discrimination is possible using the DSRF.
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Figure 45: The EMD between samples from about one hundred independently measured
field landmines of eleven types and various metal clutter. Darker colors denote smaller
distances which indicate that two samples are more similar.

To discriminate targets using the DSRF, the k-nearest neighbor (kNN) algorithm and

the support vector machine (SVM) are considered to classify targets. The EMD plays a key

role in formulating these DSRF classifiers. These classifiers are presented in Section 4.1.1.

To aid real-time, on-the-field, target discrimination, a model-based soil prescreener is

introduced to identify the presence of metallic objects. The DSRF estimation and classi-

fication are only performed when a target is present. The soil prescreener is discussed in

Section 2.4.2.

The classifier and soil prescreener are incorporated in a landmine detection framework

developed in Section 4.1.3. Lastly, the performance of the framework, utilizing the DSRF

classifiers and the prescreener, is examined and compared to existing detection techniques

in Section 4.2.
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4.1 Detection Methods

4.1.1 Target Classifiers

Two DSRF-based target discrimination techniques using the kNN and the SVM are devel-

oped here. With only two classes, landmine and not-landmine, the classification problem

reduces to a detection problem.

The kNN predicts the class of a target based on the labels of its closest k neighbors.

In the case of the kNN, the distance measure used to quantify the similarity between two

DSRFs is the EMD. The Euclidean distance is a poor measure of the similarity between

the two DSRF because the relaxations of two DSRFs are usually sparse and not aligned, as

discussed in Section 2.2.1.

In the case of the SVM, given a target’s DSRF parameter set S, the target is classi-

fied/labeled using the decision function

f(S) = sign

(∑
i=1

αiyiK(SiT , S) + β

)
, (61)

where K is the kernel (explained shortly), SiT the training data, yi ∈ {−1,+1} the training

class labels, αi the trained weights, and β the trained threshold. Only a few α’s are nonzero,

i.e., the α’s are sparse. The SiT that correspond to the nonzero αi are called the support

vectors.

For the kernel, a generalized radial basis function based on the EMD is used [61]:

KEMD(S1, S2) = exp(−ρEMD(S1, S2)), (62)

where ρ is a scaling parameter. For brevity, (62) is called the EMD kernel [62]. While

it has not been possible to prove that the EMD kernel satisfies Mercer’s condition, i.e.,

KEMD is positive semi-definite, it is observed that the EMD kernel is positive semi-definite

in practice [62]. Furthermore, it should be noted that kernels that do not satisfy Mercer’s

condition can still perform well [61].

4.1.2 Soil Prescreener

A soil prescreener based on the soil model (21) is presented here. The prescreener filters out

responses that are like those due to the magnetic properties of the soil. This reduces the
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computation cost in unnecessary DSRF estimation. The prescreening process is performed

very efficiently via a linear least-squares minimization.

In Section 2.4.2, a soil model is proposed based on the log-linear trend in the soil

frequency response:

HG(ω) = p1 + p2

(
lnω + j

π

2

)
, (63)

where p1 and p2 are model parameters. The real part has a linear trend with respect to

the log-frequency, and the imaginary part is a constant. Recall that for a soil response bG

measured at N frequencies,

bG = Gp + noise , (64)

where

G =



1 lnω1 + jπ/2

1 lnω2 + jπ/2

...
...

1 lnωN + jπ/2


and p =

p1

p2

 .

Using the system of equations (64), a measured soil response can be fitted efficiently via a

least-squares minimization:

bG,fit = G(GHG)−1GHbG. (65)

The magnitude and residual of soil responses for 6000 samples collected at locations

that are reported to have no metal content are shown in Fig. 46. Some magnitudes are

strong (> −125 dB) because metal targets were actually present nearby. For most samples,

the magnitude of the modeling residual is noticeably smaller than the response, indicating

that the samples fit the soil model well. Ground responses that do not fit well, i.e., have

high residuals, often occur when strong metallic objects are near by.

Because the model describes a behavior very specific to the soil, the model can be used

as a prescreener to determine whether a target is present based on the fitting residual.

Given a frequency response, the response is fitted to (63) using (65) and the fitting residual

ε is compared with a threshold θ to determine whether a metallic object is present:

target present =
{ true if ε > θ

false otherwise.
(66)
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A reasonable choice of θ for our measurement is −135 dB, as suggested by Fig. 46.
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Figure 46: Samples of blank responses fitted to the soil model (21). The samples are
ordered so that response decreases with increasing sample number.

4.1.3 Detection Framework

A detection framework that incorporates the soil prescreener and the target classifier is

presented here. The framework is designed to be suitable for practical applications where

measurements are acquired sequentially in real-time. It is designed according to the scenario

where a detection vehicle carrying the EMI sensors is driven forward and EMI responses bn

are collected sequentially.

The prescreener first screens out the responses that are absent of metallic objects. Re-

sponses that pass the prescreener, indicating a target is present, are then processed to

estimate their DSRFs. Based on the estimated DSRF, the classifier then labels the re-

sponses as landmine or not-landmine. The use of the prescreener significantly reduces the

amount of data processed by the DSRF estimator and the target classifier. Because the

prescreener takes very little computation time compared to the estimator and the classifier,

the average computation time is also greatly reduced by using the prescreener.

A simple voting mechanism is employed to discourage temporary mislabeling of land-

mines by taking advantage of the sequential measurements. As the detection vehicle passes
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over the target, often multiple measurement are collected consecutively for that target. In

this case, multiple labels xi are produced, and a more confident decision can be made based

on the recent labels. A landmine is determined to be present only when p out of the past q

labels are marked as landmine. The voting rule reduces the false-alarm rate and increases

the confidence level.

The proposed framework is summarized below and a flow chart is shown in Fig 47.

Detection Framework
Input: bn, θ , p, xn−q+1 . . . xn−1

Output: decisionn
1 Fit bn to soil model (21) and obtain residual ε.
2 if ε < θ then
3 xn = 0
4 else

5 Ŝ = estimated DSRF of bn

6 xn = classify(Ŝ) (0 or 1)

7 if
∑n

i=n−q+1 xi > p then

8 decisionn = 1
9 else

10 decisionn = 0

11 return decisionn

Given the EMI response Hn

Fit hn to the ground model and
obtain the �tting error ε

Estimate the DSRF S from Hn

ε > θ ?

Yes

No No

xn= classi�cation of hn using S
    xn  ∈  {0,1}

Declare landmine present

Advance to the next measurement
              n      n+1

Σ xi > p ?
i=n-q+1

n

Yes

Figure 47: Flow chart of the detection framework.
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4.2 Performance

The proposed method is applied to a data set acquired from a testing field that contains

26 types of landmines and various types of metallic and nonmetallic clutter. The field is

divided into 220 grid cells where targets are buried. This is the same testing field described in

Section 2.4. About 145 EMI responses are collected per grid cell. In total, 32,148 responses

are collected for the whole field. The acquisition hardware used is described in [8].

The EMI responses are collected sequentially as the detection vehicle is driven down

the lane, and the responses are fed into the detection framework described earlier. The

parameters are chosen such that p = 10, q = 20, and θ = −135 dB. A snapshot of the

output of the framework is shown in Fig. 48. Because the responses are filtered [8], a target

response has multiple lobes,e.g., grid 71 to 74.

68 69 70 71 72 73 74 75
−200

−100

0

C H O misc T I

Figure 48: A snapshot of the output of the detection framework. The labels on the
horizontal axis indicate the grid numbers, and the vertical axis is the response magnitude
in dB. The curved lines are the strength of the responses measured at 21 frequencies. The
target types are noted above the grid number. The blue lines (near -200 dB) indicate points
that are marked as soil; black dots (at -100 dB) indicate points that are labeled as landmines;
red diamonds indicate a declaration of landmine.

In Fig. 48, it is seen that the soil prescreener is quite effective and the voting rule reduces

false alarms. In grid 72, a miscellaneous clutter is labeled as a landmine for a few times,

but because the number of mislabels is small (< p), a landmine is not declared and a false

alarm is avoided.

More output of the detection framework is shown in Fig. 49, where multiple lanes are

displayed. In general, landmines are correctly detected, labeled by the red diamonds, the

soil-only responses are correctly identified, indicated by the blue lines, and the metallic

clutters are correctly classified. In grid 66, the target is weak and is screened out by the

soil prescreener. Upon close examination, this target has a soil-like frequency response.
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Figure 49: Output of the detection framework when applied to multiple lanes. The notation is the same as in Fig. 48.
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The performance of the detection framework using the SVM is summarized in Fig. 50.

The receiver operating characteristic (ROC) curve achieves a high detection rate of 0.96 at a

low false-alarm rate of 0.10. Other operating points also provide satisfactory performances.
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Figure 50: ROC curves of the proposed method and that of Fails et al.. For the kNN
ROC curve, k = 7.

The detection process does not take much computer time. With a single pre-trained

SVM, the whole test field (32,148 responses) can be classified using the above process,

including estimating the DSRF, in 30 seconds on a 2.66 GHz CPU with 960 MB RAM.

The performance of the detection framework using the kNN is also shown in Fig. 50.

The performance is comparable to that of the SVM. However, the processing time is much

longer (10+ minutes) due to the many distance computations required to find the nearest

neighbor per measurement. While the kNN may not be suitable for real-time application,

it is quite robust when sufficient training data are available, as is the case here. When

training data are scarce, the SVM is likely to have smaller generalization error.

The classifiers are trained per grid cell using a leave-one-out cross-validation (LOOCV),

i.e., the classifiers are trained at each grid cell using responses from other grids cells. Only

the strongest responses in a grid cell are used for training. Grid cells containing only soil

are excluded in the training process.

The performances of the DSRF-SVM and DSRF-kNN are compared to the detection

performance of a simple energy detector, also shown in Fig. 50. The energy detector does
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not require training and declares a landmine present if the energy of the response is greater

than a threshold. To avoid bias in the real part of the response, which is due to the DC

magnetization of the soil, the energy is computed using the mean of the imaginary part

of the response. Compared to other methods, the energy-detection performance is rather

poor.

Figure 50 also includes the ROC curve for the method of Fails et al. [6] where the

performance is evaluated on the same data set using LOOCV. While the proposed method is

slightly better, the simulation done by Fails et al. does not utilize sequential measurements.

All the ROC curves in Fig. 50 saturate at 0.99 detection rate. This is due to the

misclassification of one particular landmine. Upon close examination, it is found that the

response of this landmine is very weak and is indistinguishable from the soil response. In

the proposed framework, this target is filtered out by the soil prescreener. Other features,

such as the soil response and the magnetic property of targets, may be included to provide

even more robust performance. The study presented here only demonstrates the strong

potential of using the DSRF for landmine detection.
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CHAPTER V

CONCLUSIONS

In this thesis, two effective modeling techniques for EMI signals are developed: one for a

single measurement vector and one for multiple measurement vectors. These techniques

overcome several long-standing obstacles in estimating the discrete spectrum of an EMI

response. This is achieved by first linearizing the problem through enumeration and then

exploiting the notion of sparsity. The multiple-measurement technique exploits the invari-

ance of the relaxation frequencies to further improve the estimation performance. The two

techniques provide robust features for a DSRF-based classification that was developed to

demonstrate the strong potential of DSRF-based subsurface target detection.

The main contribution of this research is a new technique in estimating the DSRF of

a target from its EMI response, which enables DSRF-based subsurface target detection.

Discriminating targets based on DSRF-like models has been studied for decades, but the

inability to estimate the DSRF reliably has been the primary limiting factor until advances

made by this research. The developed methods fall in the domain of detecting and discrim-

inating subsurface targets using broadband EMI sensors. The contribution of this research

has been to first characterize the EMI response of a target through modeling and then

discriminate targets based on the characterizations using classification algorithms.

In Chapter 1, the motivation and background of subsurface target discrimination using

broadband EMI sensors are provided. Two classes of broadband EMI model are introduced

– continuous and discrete. It is argued that the discrete model is valuable for target discrim-

ination due to the position and orientation invariance of the discrete relaxation frequencies.

In this chapter, the difficulties in extracting the parameters of the discrete model, i.e., es-

timating the DSRF, are addressed. Previous works and their shortcomings are examined.

A similarity map based on the DSRF for different types of targets is given to demonstrate

the potential to classify, hence discriminate, targets based on the discrete model.
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In Chapter 2, a sparsity-regularized DSRF estimation method using a single measure-

ment is developed. The estimation problem is first linearized through enumeration in the re-

laxation frequency domain. The linearized problem is then solved by a sparsity-regularized

least-squares. Through tests performed using synthetic, laboratory, and field data, this

method is found to give satisfactory estimates. A soil model is proposed based on observed

soil responses, and an augmented dictionary that includes the DSRF and the soil model is

developed to model the target and soil response simultaneously. A simulation is performed

to study the regularization parameter λ and then derive a simple formula for selecting λ as

function of SNR.

In Chapter 3, the DSRF estimation method proposed in Chapter 2 is generalized to ac-

commodate multiple measurements. Exploiting the invariance of the relaxation frequencies,

a matrix equation is formulated with the property of row-sparsity. Using this row-sparsity, a

robust DSRF estimation method is developed for the multiple-measurement case. Through

simulations and tests using the laboratory and field data, this proposed method is found to

be robust and fast. A performance gain over the single measurement method is observed

over a wide range of SNRs in the simulated results.

In Chapter 4, the DSRF is applied to discriminate targets using classification algorithms

in conjunction with the EMD. A soil prescreener is introduced to filter out responses that

lack metallic objects. A detection framework is developed to include the soil prescreener,

the DSRF estimation method, and the classifier. A sliding-window voting mechanism is in-

troduced to discourage temporary mislabeling. The DSRF-based target detection is demon-

strated to deliver high detection but low false-alarm rate. The detection framework provides

a working example for DSRF-based subsurface target detection.

Two ideas for future research are suggested in Section 2.4.2 and Section 3.6. The first is

to investigate the effect of soil and to quantify the range of signal-to-soil ratio in which the

DSRF estimation performs satisfactory. The second is to perform a more comprehensive

regularization parameter simulation that accounts for the nonuniform SNRs in multiple

measurements. The results of this future research can further improve the robustness of the

DSRF estimation methods.
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APPENDIX A

THE EMI MODEL

The physical electromagnetic model of the EMI response and its relation to the discrete

EMI model is presented here. It is also discussed here the relationship among several forms

of the EMI model, including time-domain and frequency-domain model.

A.1 A Physical Model for the EMI Response

The EMI response of a metallic object is the result of the interaction between the trans-

mitting loops, the receiving loops, and the object’s magnetic polarizability M [63]. It can

be shown by using reciprocity that response H(ω) is

H(ω) = αHR
TM(ω)HT, (67)

where α is a real constant, HT is the magnetic field generated by the transmitting loop, HR

is the magnetic field of the receiving loop if it is driven, and M is a complex, frequency

independent, second-rank tensor.

Equation (67) can be expanded because the magnetic polarizability of a target can be

written as a sum of relaxations [64]:

M(ω) = T0T 0 −
∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)T k, (68)

where Tk is a real constant and T k is a real, symmetric, second-rank tensor. The first term

is due to the bulk magnetic permeability of the target, which is assumed to be frequency

independent, and the second term is due to the currents induced in the target [63].

Expanding M in (67) using (68), the response becomes

H(ω) = αHR
T

[
T0T 0 −

∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)T k

]
HT

= α

[
T0HR

TT 0HT −
∑
k=1

Tk(
jω/ζk

1 + jω/ζk
)HR

TT kHT

]
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= d0 −
∑
k=1

dk
jω/ζk

1 + jω/ζk
, (69)

where dk = αTkHR
TT kHT. Note that ζk is independent of position and orientation while dk

is dependent of the position and orientation of the target relative to the sensors. This form

provides more intuition about the physical process of EMI, where, again, the first term is

due to the bulk magnetic permeability of the target and the second term is due to the eddy

currents induced in the target.

From (69), a unit-step time response can be obtained using the inverse Laplace trans-

form:

h(t) = L−1

{
1

jω

[
d0 −

∑
k=1

dk
jω/ζk

1 + jω/ζk

]}

= L−1

{
d0

jω
−
∑
k=1

dk
ζk + jω

}

= d0u(t)−
∑
k=1

dke
−tζku(t) (70)

A.2 Forms of the EMI Model

The EMI model (69) can be written in other forms that are useful for signal processing.

Two alternative forms are examined in this section. When the nonnegative least-squares

method was first developed in this research, the following form was introduced [33]:

H(ω) = r0 +
∑
k=1

rk
1 + jω/ζk

, (71)

where the parameters are related to the physical form (69) by

d0 = r0 +
∑
k=1

rk and dk = rk. (72)

The relationship between (69) and (71) is as follows:

H(ω) = d0 −
∑
k=1

dk
jω/ζk

1 + jω/ζk

= d0 −
∑
k=1

(
dk

jω/ζk
1 + jω/ζk

+ dk − dk
)

=

(
d0 −

∑
k=1

dk

)
−
∑
k=1

(
dk

jω/ζk
1 + jω/ζk

− dk
1 + jω/ζk
1 + jω/ζk

)
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=

(
d0 −

∑
k=1

dk

)
+
∑
k=1

dk
1 + jω/ζk

= r0 +
∑
k=1

rk
1 + jω/ζk

.

In the sparsity-promoting methods, another form (6) was introduced to give uniform-

normed columns in the linearized model, which is related to (71) by

H(ω) = r0 +
∑
k=1

rk
1 + jω/ζk

−
(
r0 +

∑
k=1

rk
2

)
+

(
r0 +

∑
k=1

rk
2

)

=
∑
k=1

(1− 1/2− jω/ζk/2) rk
1 + jω/ζk

+

(
r0 +

∑
k=1

rk
2

)

=

(
r0 +

∑
k=1

rk
2

)
+
∑
k=1

rk
2

1− jω/ζk
1 + jω/ζk

= c0 +
∑
k=1

ck
1− jω/ζk
1 + jω/ζk

, (73)

where c0 = r0 +
∑
k=1

rk
2

and ck =
rk
2

. (74)

This uniform-norm model (73) is relate to the physical form (69) using (72) and (74):

d0 = c0 +
∑
k=1

ck and dk = 2ck. (75)

The form in (73) is preferred for the DSRF estimation because 1−jω/ζk
1+jω/ζk

has a unit

norm independent of ζk, so the dictionary in (16), populated by enumerating 1−jω/ζk
1+jω/ζk

, has

columns with equal norms, implying that each ζ̃m is equally likely to be selected by the

DSRF estimator. This is true because the proposed DSRF estimation (18) minimizes the

`p norm, and the `p norm discourages large entries. If a column has a smaller norm, then

its corresponding entry in the weighted selection vector needs to take on a larger value to

compensate the small column norm, which is penalized. Therefore, selecting a column with

a smaller norm is penalized more compared to other columns with larger norms. For this

reason, a dictionary with uniform column norms is desired and the unit-norm form for H(ω)

(73) is preferred.
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APPENDIX B

JOINTLY SPARSE VECTOR RECOVERY VIA ITERATIVELY

REWEIGHTED `1 MINIMIZATION

The sparse minimization problem (45) can be approximated by minimizing the log-sum

objective function on the norm of the rows:

arg min
X

M+1∑
m=1

log (||xm||q + ε) s.t. B = AX, (76)

where ε > 0 is a small positive real number introduced for stability. Recall that ||xm||q ≥ 0

are the entries of R`q(X), the `q-norm of the rows of X defined in (32). For simplicity,

q = 1 is considered here.

Following the reweighting scheme in [40], (76) can be solved with an iterative algorithm

referred here as M-IRL1:

Step 1) Initialize count i = 0 and w
(0)
m = 1, i = 1, . . . ,M + 1.

Step 2) Solve the weighted `1 minimization problem

X(i) = arg min
X

||W(i)R`1(X)||1 subject to B = AX,

where W(i) = diag[w
(i)
1 , w

(i)
2 , . . . , w

(i)
M+1]. (77)

Step 3) Update the weights:

w(i+1)
m =

1

||xm||(i)1 + ε
, m = 1, . . . ,M + 1. (78)

Step 4) Terminate on convergence or when i reaches a specified maximum number

of iterations imax. Otherwise, iterate from Step 2.

While (76) better promotes sparsity, it is nonconvex and a unique solution is not guar-

anteed. The proposed M-IRL1 method can be trapped in local minima. However, when

an initial point is properly chosen, the algorithm does converge to the global minimum, as

shown empirically in Section 3.3. The proposed method converges as argued in [50].

88



B.1 Algorithm Justification

This section provides a justification for the proposed method. A similar derivation is found

in [40], which is the following with L = 1.

In (76), substitute for ||xm||q using (31):

arg min
X

∑
m=1

log

(
L∑
l=1

|xm,l|+ ε

)
s.t. B = AX. (79)

The minimization in (79) is equivalent to

arg min
s

∑
m=1

log

(
L∑
l=1

um,l + ε

)
s.t. s ∈ C, (80)

where s = (X,U) and C is the convex set {(xm,l, um,l) |B = AX and |xm,l| ≤ um,l}.

Recognizing the objective function in (80) is concave, which is below its tangent, a guess

s(k) ∈ C can be improved by minimizing a linearized objective function around s(k):

s(k+1) = arg min
s

g(s(k)) +∇g(s(k))(s− s(k)) s.t. s ∈ C,

where g(s) =
∑
m=1

log

(
L∑
l=1

um,l + ε

)
. (81)

It can be readily shown that

∂g

∂um,l
=

(
L∑
l=1

um,l + ε

)−1

. (82)

From (81) and (82),

(X(k+1),U (k+1)) = arg min
∑
m=1

∑L
l=1 um,l∑L

l=1 u
(k)
m,l + ε

s.t. B = AX and |xm,l| ≤ um,l, (83)

which is equivalent to

X(k+1) = arg min
∑
m=1

∑L
l=1 |xm,l|∑L

l=1 |x
(k)
m,l|+ ε

s.t. B = AX.

Using (31),

X(k+1) = arg min
∑
m=1

||xm||q
||xm||(k)

q + ε
s.t. B = AX. (84)

The iteration and weights in (84) define the proposed algorithm.
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APPENDIX C

EARTH MOVER’S DISTANCE

Given two distributions Ŝ = {(ζ̂i, ĉi) : i = 1 . . . K̂} and S = {(ζj , cj) : j = 1 . . .K}, the

Earth Mover’s Distance (EMD) between the two distributions can be computed by solving

the optimization problem [43]:

EMD(Ŝ, S) = min
fij

∑K̂
i=1

∑K
j=1 fijdij∑K̂

i=1

∑K
j=1 fij

(85)

subject to
K∑
j=1

fij ≤ ĉi i = 1 . . . K̂ (86)

K̂∑
i=1

fij ≤ cj j = 1 . . .K (87)

K̂∑
i=1

K∑
j=1

fij = min(
K̂∑
i=1

ĉi,
K∑
j=1

cj) (88)

fij ≥ 0 i = 1 . . . K̂, j = 1 . . .K (89)

where fij is an intermediate variable used during the optimization and dij is the distance

function. Adapting the illustration in Section 2.2.1, Ŝ is the piles of earth and S the holes.

Equation (86) guarantees no overdraw from each pile of earth, (87) guarantees no over fill at

each hole, (88) sets the problem to fill up the holes with as much earth as possible, and (89)

allows only moving earth into holes and not the reverse.

In this work, spectra should be normalized having sum of all spectral amplitudes be

unity (
∑
ci = 1). In this case, the above optimization problem is simplified to having

the denominator in (85) be one and the right-hand-side of (88) be unity. The EMD also

becomes symmetric.
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